130 research outputs found

    Perspectives on global mycotoxin issues and management from the mycokey maize working group

    Get PDF
    Open Access Article; Published online: 11 Sept 2020During the last decade, there have been many advances in research and technology that have greatly contributed to expanded capabilities and knowledge in detection and measurement, characterization, biosynthesis, and management of mycotoxins in maize. MycoKey, an EU‐funded Horizon 2020 project, was established to advance knowledge and technology transfer around the globe to address mycotoxins impacts in key food and feed chains. MycoKey included several working groups comprised of international experts in different fields of mycotoxicology. The MycoKey Maize Working Group recently convened to gather information and strategize for the development and implementation of solutions to the maize mycotoxin problem in light of current and emerging technologies. This feature summarizes the Maize WG discussion and recommendations for addressing mycotoxin problems in maize. Discussions focused on aflatoxins, deoxynivalenol, fumonisins, and zearalenone, which are the most widespread and persistently important mycotoxins in maize. Although regional differences were recognized, there was consensus about many of the priorities for research and effective management strategies. For pre-harvest management, genetic resistance and selecting adapted maize genotypes, along with insect management, were among the most fruitful strategies identified across the mycotoxin groups. For post-harvest management, the most important practices included timely harvest, rapid grain drying, grain cleaning, and carefully managed storage conditions. Remediation practices such as optical sorting, density separation, milling, and chemical detoxification were also suggested. Future research and communication priorities included advanced breeding technologies, development of risk assessment tools, and the development and dissemination of regionally relevant management guidelines

    Advanced backcross QTL mapping of resistance to Fusarium head blight and plant morphological traits in a Triticum macha × T. aestivum population

    Get PDF
    While many reports on genetic analysis of Fusarium head blight (FHB) resistance in bread wheat have been published during the past decade, only limited information is available on FHB resistance derived from wheat relatives. In this contribution, we report on the genetic analysis of FHB resistance derived from Triticum macha (Georgian spelt wheat). As the origin of T. macha is in the Caucasian region, it is supposed that its FHB resistance differs from other well-investigated resistance sources. To introduce valuable alleles from the landrace T. macha into a modern genetic background, we adopted an advanced backcross QTL mapping scheme. A backcross-derived recombinant-inbred line population of 321 BC2F3 lines was developed from a cross of T. macha with the Austrian winter wheat cultivar Furore. The population was evaluated for Fusarium resistance in seven field experiments during four seasons using artificial inoculations. A total of 300 lines of the population were genetically fingerprinted using SSR and AFLP markers. The resulting linkage map covered 33 linkage groups with 560 markers. Five novel FHB-resistance QTL, all descending from T. macha, were found on four chromosomes (2A, 2B, 5A, 5B). Several QTL for morphological and developmental traits were mapped in the same population, which partly overlapped with FHB-resistance QTL. Only the 2BL FHB-resistance QTL co-located with a plant height QTL. The largest-effect FHB-resistance QTL in this population mapped at the spelt-type locus on chromosome 5A and was associated with the wild-type allele q, but it is unclear whether q has a pleiotropic effect on FHB resistance or is closely linked to a nearby resistance QTL

    Seagrass genomes reveal ancient polyploidy and adaptations to the marine environment

    Get PDF
    DATA AVAILABILITY : The DNA sequencing data for the C. nodosa genome assembly have been deposited in the NCBI database under BioProject PRJNA1041560 via the link https://www.ncbi.nlm.nih.gov/bioproject/?term=PRJNA1041560. All assemblies and annotations for all seagrass species discussed in the current paper can be found at https://bioinformatics.psb.ugent.be/gdb/seagrasses/. The transcriptome data (including raw data and clean data) and sequencing QC reports for C. nodosa can be found at https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=Cymnodnscriptome_2, the transcriptome data and sequencing QC reports for P. oceanica can be found at https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=Posocenscriptome_2, the transcriptome data and sequencing QC reports for T. testudinum can be found at https://genome.jgi.doe.gov/portal/pages/dynamicOrganismDownload.jsf?organism=Thatesnscriptome_4 and the transcriptome data for Z. marina are from ref. 15. For the public databases, the RFAM database v.14.7 can be downloaded at https://ftp.ebi.ac.uk/pub/databases/Rfam/14.7/, the UniProt database can be accessed from the web at http://www.uniprot.org and downloaded from http://www.uniprot.org/downloads and the NCBI nucleotide database can be accessed via https://www.ncbi.nlm.nih.gov/.We present chromosome-level genome assemblies from representative species of three independently evolved seagrass lineages: Posidonia oceanica, Cymodocea nodosa, Thalassia testudinum and Zostera marina. We also include a draft genome of Potamogeton acutifolius, belonging to a freshwater sister lineage to Zosteraceae. All seagrass species share an ancient whole-genome triplication, while additional whole-genome duplications were uncovered for C. nodosa, Z. marina and P. acutifolius. Comparative analysis of selected gene families suggests that the transition from submerged-freshwater to submerged-marine environments mainly involved fine-tuning of multiple processes (such as osmoregulation, salinity, light capture, carbon acquisition and temperature) that all had to happen in parallel, probably explaining why adaptation to a marine lifestyle has been exceedingly rare. Major gene losses related to stomata, volatiles, defence and lignification are probably a consequence of the return to the sea rather than the cause of it. These new genomes will accelerate functional studies and solutions, as continuing losses of the ‘savannahs of the sea’ are of major concern in times of climate change and loss of biodiversity.The DOE, JGI, Berkeley, California, USA, under the Community Sequencing Program 2018; the European Research Council under the European Union’s Horizon 2020 research and innovation programme ; Ghent University (Methusalem funding); the Deutsche Forschungsgemeinschaft (German Research Foundation); the Helmholtz School for Marine Data Science; partially supported by the project Marine Hazard, PON03PE_00203_1 (MUR, Italian Ministry of University and Research) and by the National Biodiversity Future Centre Program, Italian Ministry of University and Research, PNRR, Missione 4 Componente 2 Investimento 1.4; and Universiti Malaysia Terengganu.https://www.nature.com/nplants2024-07-26hj2024BiochemistryGeneticsMicrobiology and Plant PathologySDG-14:Life below wate

    Impact of food processing and detoxification treatments on mycotoxin contamination

    Get PDF
    • 

    corecore