72 research outputs found

    Non-universal equilibrium crystal shape results from sticky steps

    Full text link
    The anisotropic surface free energy, Andreev surface free energy, and equilibrium crystal shape (ECS) z=z(x,y) are calculated numerically using a transfer matrix approach with the density matrix renormalization group (DMRG) method. The adopted surface model is a restricted solid-on-solid (RSOS) model with "sticky" steps, i.e., steps with a point-contact type attraction between them (p-RSOS model). By analyzing the results, we obtain a first-order shape transition on the ECS profile around the (111) facet; and on the curved surface near the (001) facet edge, we obtain shape exponents having values different from those of the universal Gruber-Mullins-Pokrovsky-Talapov (GMPT) class. In order to elucidate the origin of the non-universal shape exponents, we calculate the slope dependence of the mean step height of "step droplets" (bound states of steps) using the Monte Carlo method, where p=(dz/dx, dz/dy)$, and represents the thermal averag |p| dependence of , we derive a |p|-expanded expression for the non-universal surface free energy f_{eff}(p), which contains quadratic terms with respect to |p|. The first-order shape transition and the non-universal shape exponents obtained by the DMRG calculations are reproduced thermodynamically from the non-universal surface free energy f_{eff}(p).Comment: 31 pages, 21 figure

    Berry phases for 3D Hartree type equations with a quadratic potential and a uniform magnetic field

    Full text link
    A countable set of asymptotic space -- localized solutions is constructed by the complex germ method in the adiabatic approximation for 3D Hartree type equations with a quadratic potential. The asymptotic parameter is 1/T, where T≫1T\gg1 is the adiabatic evolution time. A generalization of the Berry phase of the linear Schr\"odinger equation is formulated for the Hartree type equation. For the solutions constructed, the Berry phases are found in explicit form.Comment: 15 pages, no figure

    Berry phases for the nonlocal Gross-Pitaevskii equation with a quadratic potential

    Full text link
    A countable set of asymptotic space -- localized solutions is constructed by the complex germ method in the adiabatic approximation for the nonstationary Gross -- Pitaevskii equation with nonlocal nonlinearity and a quadratic potential. The asymptotic parameter is 1/T, where T≫1T\gg1 is the adiabatic evolution time. A generalization of the Berry phase of the linear Schr\"odinger equation is formulated for the Gross-Pitaevskii equation. For the solutions constructed, the Berry phases are found in explicit form.Comment: 13 pages, no figure

    Propagator of a Charged Particle with a Spin in Uniform Magnetic and Perpendicular Electric Fields

    Full text link
    We construct an explicit solution of the Cauchy initial value problem for the time-dependent Schroedinger equation for a charged particle with a spin moving in a uniform magnetic field and a perpendicular electric field varying with time. The corresponding Green function (propagator) is given in terms of elementary functions and certain integrals of the fields with a characteristic function, which should be found as an analytic or numerical solution of the equation of motion for the classical oscillator with a time-dependent frequency. We discuss a particular solution of a related nonlinear Schroedinger equation and some special and limiting cases are outlined.Comment: 17 pages, no figure

    Solution of the Cauchy Problem for a Time-Dependent Schoedinger Equation

    Full text link
    We construct an explicit solution of the Cauchy initial value problem for the n-dimensional Schroedinger equation with certain time-dependent Hamiltonian operator of a modified oscillator. The dynamical SU(1,1) symmetry of the harmonic oscillator wave functions, Bargmann's functions for the discrete positive series of the irreducible representations of this group, the Fourier integral of a weighted product of the Meixner-Pollaczek polynomials, a Hankel-type integral transform and the hyperspherical harmonics are utilized in order to derive the corresponding Green function. It is then generalized to a case of the forced modified oscillator. The propagators for two models of the relativistic oscillator are also found. An expansion formula of a plane wave in terms of the hyperspherical harmonics and solution of certain infinite system of ordinary differential equations are derived as a by-product.Comment: 29 pages, 4 figure
    • …
    corecore