1,501 research outputs found
NM-Scale Anatomy of an Entire Stardust Carrot Track
Comet Wild-2 samples collected by NASA s Stardust mission are extremely complex, heterogeneous, and have experienced wide ranges of alteration during the capture process. There are two major types of track morphologies: "carrot" and "bulbous," that reflect different structural/compositional properties of the impactors. Carrot type tracks are typically produced by compact or single mineral grains which survive essentially intact as a single large terminal particle. Bulbous tracks are likely produced by fine-grained or organic-rich impactors [1]. Owing to their challenging nature and especially high value of Stardust samples, we have invested considerable effort in developing both sample preparation and analytical techniques tailored for Stardust sample analyses. Our report focuses on our systematic disassembly and coordinated analysis of Stardust carrot track #112 from the mm to nm-scale
Coordinated Chemical and Isotropic Studies of IDPS: Comparison of Circumstellar and Solar GEMS Grains
Silicate stardust in IDPs and meteorites include forsterite, amorphous silicates, and GEMS grains [1]. Amorphous presolar silicates are much less abundant than expected based on astronomical models [2], possibly destroyed by parent body alteration. A more accurate accounting of presolar silicate mineralogy may be preserved in anhydrous IDPs. Here we present results of coordinated TEM and isotopic analyses of an anhydrous IDP (L2005AL5) that is comprised of crystalline silicates and sulfides, GEMS grains, and equilibrated aggregates embedded in a carbonaceous matrix. Nanometer-scale quantitative compositional maps of all grains in two microtome thin sections were obtained with a JEOL 2500SE. These sections were then subjected to O and N isotopic imaging with the JSC NanoSIMS 50L. Coordinated high resolution chemical maps and O isotopic com-positions were obtained on 11 GEMS grains, 8 crystalline grains, and 6 equilibrated aggregates
A fast search strategy for gravitational waves from low-mass X-ray binaries
We present a new type of search strategy designed specifically to find
continuously emitting gravitational wave sources in known binary systems based
on the incoherent sum of frequency modulated binary signal sidebands. The
search pipeline can be divided into three stages: the first is a wide
bandwidth, F-statistic search demodulated for sky position. This is followed by
a fast second stage in which areas in frequency space are identified as signal
candidates through the frequency domain convolution of the F-statistic with an
approximate signal template. For this second stage only precise information on
the orbit period and approximate information on the orbital semi-major axis are
required apriori. For the final stage we propose a fully coherent Markov chain
monte carlo based follow up search on the frequency subspace defined by the
candidates identified by the second stage. This search is particularly suited
to the low-mass X-ray binaries, for which orbital period and sky position are
typically well known and additional orbital parameters and neutron star spin
frequency are not. We note that for the accreting X-ray millisecond pulsars,
for which spin frequency and orbital parameters are well known, the second
stage can be omitted and the fully coherent search stage can be performed. We
describe the search pipeline with respect to its application to a simplified
phase model and derive the corresponding sensitivity of the search.Comment: 13 pages, 3 figures, to appear in the GWDAW 11 conference proceeding
Chemical Evolution of Presolar Organics in Astromaterials
Sub-micron, hollow organic globules reported from several carbonaceous chondrites, interplanetary dust particles, and comet Wild-2 samples returned by NASA?s Stardust mission are enriched in N-15/N-14 and D/H compared with terrestrial materials and the parent materials [1-4]. These anomalies are ascribed to the preservation of presolar cold molecular cloud material from where H, C, and N isotopic constraints point to chemical fractionation near 10 K [5]. An origin well beyond the planet forming region and their survival in meteorites suggests submicrometer organic globules were once prevalent throughout the solar nebula. The survival of the membrane structures indicates primitive meteorites and cometary dust particles would have delivered these organic precursors to the early Earth as well as other planets and satellites. The physical, chemical, and isotopic properties of the organic globules varies to its meteorite types and its lithologies. For example, organic globules in the Tagish Lake meteorite are always embedded in fined grained (poorly crystallized) saponite, and hardly encapsulated in coarse grained serpentine, even though saponite and serpentine are both main components of phyllosilicate matrix of the Tagish Lake meteorite. The organic globules are commonly observed in the carbonate-poor lithology but not in the carbonate-rich one. In Tagish Lake, isolated single globules are common, but in the Bells (CM2) meteorite, globules are mostly aggregated. We will review the evolutions of the organic globules from its birth to alteration in the parent bodies in terms of its own physical and chemical properties as well as its associated minerals
Pristine Stratospheric Collections of Cosmic Dust
Since 1981, NASA has routinely collected interplanetary dust particles (IDPs) in the stratosphere by inertial impact onto silicone oil-coated flat plate collectors deployed on the wings of high-altitude aircraft [1]. The highly viscous oil traps and localizes the particles, which can fragment during collection. Particles are removed from the collectors with a micromanipulator and washed of the oil using organic solvents, typically hexane or xylene. While silicone oil is an efficient collection medium, its use is problematic. All IDPs are initially coated with this material (polydimethylsiloxane, n(CH3)2SiO) and traces of oil may remain after cleaning. The solvent rinse itself is also a concern as it likely removes indigenous organics from the particles. To avoid these issues, we used a polyurethane foam substrate for the oil-free stratospheric collection of IDPs
The Spatial Distribution of Organic Matter and Mineralogical Relationships in Carbonaceous Chondrites
Organic matter present within primitive carbonaceous meteorites represents the complex conglomeration of species formed in a variety of physically and temporally distinct environments including circumstellar space, the interstellar medium, the Solar Nebula & Jovian sub-nebulae and asteroids. In each case, multiple chemical pathways would have been available for the synthesis of organic molecules. Consequently these meteorites constitute a unique record of organic chemical evolution in the Universe and one of the biggest challenges in organic cosmochemistry has been in deciphering this record. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is virtually no hard experimental data as to how these species are spatially distributed and their relationship to the host mineral matrix, (with one exception). The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (< 350K) interaction with aqueous fluids, which based on O isotope data, flowed along thermal gradients within the respective parent bodies. This pervasive aqueous alteration may have led to aqueous geochromatographic separation of organics and synthesis of new organics coupled to aqueous mineral alteration. To address such issues we have applied the technique of microprobe two-step laser desorption / photoionization mass spectrometry (L2MS) to map in situ the spatial distribution of a broad range of organic species at the micron scale in the freshly exposed matrices of the Bells, Tagish Lake and Murchison (CM2) carbonaceous chondrites
Coordinated Chemical and Isotopic Studies of GEMS in IDPS
Cometary IDPs contain a record of the building blocks of the solar system including presolar grains, molecular cloud material, and materials formed in the early solar nebula [1]. Following their accretion, these materials have remained relatively unaltered because of the lack of parent body hydrothermal alteration. We are using coordinated transmission electron microscope (TEM) and ion microprobe studies to establish the origins of the various components within cometary IDPs. Of particular interest is the nature and abundance of presolar silicates in these IDPs because astronomical observations suggest that crystalline and amorphous silicates are the dominant grain types produced in young main sequence stars and evolved O-rich stars [e.g. 2]. Amorphous silicates (in the form of GEMS grains) are a major component of cometary IDPs and so a major objective of this work is to elucidate their origins. In rare cases, GEMS grains have highly anomalous O isotopic compositions that establish their origins as circumstellar condensates [3]. Here we present data on a systematic study of the silicate components within a primitive IDP
Coordinated Chemical and Isotopic Imaging of Bells (CM2) Meteorite Matrix
Meteoritic organic matter is a complex conglomeration of species formed in distinct environments and processes in circumstellar space, the interstellar medium, the Solar Nebula and asteroids. Consequently meteorites constitute a unique record of primordial organic chemical evolution. While bulk chemical analysis has provided a detailed description of the range and diversity of organic species present in carbonaceous chondrites, there is little information as to how these species are spatially distributed and their relationship to the host mineral matrix. The distribution of organic phases is nevertheless critical to understanding parent body processes. The CM and CI chondrites all display evidence of low temperature (< 350K) aqueous alteration that may have led to aqueous geochromatographic separation of organics and synthesis of new organics coupled to aqueous mineral alteration. Here we present the results of the first coordinated in situ isotopic and chemical mapping study of the Bells meteorite using a newly developed two-step laser mass spectrometer (mu-L(sup 2)MS) capable of measuring a broad range of organic compounds
The Spatial Distribution and Mineralogical Association of Organics in the Tagish Lake and Bells Carbonaceous Chondrites
Chondritic meteorites represent some of the most primitive Solar System materials available for laboratory analysis. While the presence of simple organic molecules has been well documented in such materials [1], little is known about their spatial distribution and to what extent, if any, they exhibit specific mineralogical associations. This dichotomy arises since organic analysis typically involves solvent extraction as a preliminary step. To address these issues we have used two-step laser mass spectrometry (L 2MS) to map in situ the spatial distribution of aromatic and conjugated organics at the micron scale in freshly exposed surfaces of the Tagish Lake and Bells carbonaceous chondrites. Our specific goals are two-fold; firstly to investigate if and how abundance of organic species varies within the meteorite matrix both as an ensemble, and with respect to functional group (e.g., R-OH vs. RCH3) and between members of the same homologous series (e.g., R-H vs. R-(CH2)H). Secondly, to determine whether observed spatial variations can be related to specific mineralogical and/or physical characteristics of the host matrix. In regard to the latter we are particularly interested in the role that carbonaceous nanoglobules [2] play as reservoirs of organic matter. Such globules, which are believed to have formed by photochemical processing of organic-rich ices in the presolar cold molecular cloud or the outermost reaches of the early protosolar disk, are abundant in both the Bells and Tagish Lake chondrites and are noteworthy for having particularly high enrichments in 2H and 15N [3,4]
Mineralogy of Interplanetary Dust Particles from the Comet Giacobini-Zinner Dust Stream Collections
The Draconoid meteor shower, originating from comet 21P/Giacobini-Zinner, is a low-velocity Earth-crossing dust stream that had a peak anticipated flux on Oct. 8, 2012. In response to this prediction, NASA performed dedicated stratospheric dust collections to target interplanetary dust particles (IDPs) from this comet stream on Oct 15-17, 2012 [3]. Twelve dust particles from this targeted collection were allocated to our coordinated analysis team for studies of noble gas (Univ. Minnesota, Minnesota State Univ.), SXRF and Fe-XANES (SSL Berkeley) and mineralogy/isotopes (JSC). Here we report a mineralogical study of 3 IDPs from the Draconoid collection.
- …