99 research outputs found

    Osmoregulation of the Australian freshwater crocodile, Crocodylus johnstoni, in fresh and saline waters

    Get PDF
    An unusual saltwater population of the "freshwater" crocodilian, Crocodylus johnstoni, was studied in the estuary of the Limmen Bight River in Australia's Northern Territory and compared with populations in permanently freshwater habitats. Crocodiles in the river were found across a large salinity gradient, from fresh water to a salinity of 24 mg.ml-1, more than twice the body fluid concentration. Plasma osmolarity, concentrations of plasma Na+, Cl-, and K+, and exchangeable Na+ pools were all remarkably constant across the salinity spectrum and were not substantially higher or more variable than those in crocodiles from permanently freshwater habitats. Body fluid volumes did not vary; condition factor and hydration status of crocodiles were not correlated with salinity and were not different from those of crocodiles from permanently fresh water. C. johnstoni clearly has considerable powers of osmoregulation in waters of low to medium salinity. Whether this osmoregulatory competence, extends to continuously hyperosmotic environments is not known, but distributional data suggest that C. johnstoni in hyperosmotic conditions may require periodic access to hypoosmotic water. The study demonstrates a physiological capacity for colonisation of at least some estuarine waters by this normally stenohaline freshwater crocodilian

    Survival and Growth of Hatchling Crocodylus porosus in Saltwater Without Access to Fresh Drinking Water

    Get PDF
    It has been suggested that C. porosus select nest sites which provide a source of freshwater for hatchlings during the dry season. From a mark-recapture study, we conclude that hatchling C. porosus can survive and grow in hyperosmotic saltwater without drinking fresh water. Hence, the siting of nests is unlikely to be the consequence of a requirement by hatchlings for fresh water. Considered along with other information, our observations imply that hatchling C. porosus have functional salt glands

    Plasma Homeostasis and Cloacal Urine Composition in Crocodylus porosus Caught Along a Salinity Gradient

    Get PDF
    Juveniles of the Estuarine or Saltwater Crocodile, Crocodylus porosus, maintain both osmotic pressure and plasma electrolyte homeostasis along a salinity gradient from fresh water to the sea. In fresh water (FW) the cloacal urine is a clear solution rich in ammonium and bicarbonate and containing small amounts of white precipitated solids with high concentrations of calcium and magnesium. In salt water (SW) the cloacal urine has a much higher proportion of solids, cream rather than white in colour, which are the major route for excretion of potassium in addition to calcium and magnesium. Neither liquid nor solid fractions of the cloacal urine represent a major route for excretion of sodium chloride. The solids are urates and uric acid, and their production probably constitutes an important strategy for water conservation by C. porosus in SW. These data, coupled with natural history observations and the recent identification of lingual salt glands, contribute to the conclusion that C. porosus is able to live and breed in either fresh or salt water and may be as euryhaline as any reptile

    Lingual Salt Glands in Crocodylus acutus and C. johnstoni and Their Absence from Alligator mississipiensis and Caiman crocodilus

    Get PDF
    1. Lingual salt glands, secreting hyperosmotic Na/K solutions in response to methacholine, are present in Crocodylus acutus and C. johnstoni but apparently absent from the alligatorids, Alligator mississipiensis and Caiman crocodilus. 2. Both secretory rates (6-20 [micro-mol/100 g-h) and concentrations (450-600 mM Na) of glandular secretions are essentially identical in the marine/estuarine C. acutus and C. porosus and significantly higher than in the freshwater C. johnstoni (1-2 micro-mol/100 g-h; 320-420 mM Na). 3. Lingual glands in Alligator secrete isosmotic Na/K at low rates (1-2 micro-mol/100 g-h) while those of Caiman show no response to methacholine. 4. The physiological contrast between alligatorids and crocodylids is reflected in distinct differences in the superficial appearance of the tongue and lingual pores. 5. It is postulated that the alligatorid condition of low secretory capacity and isosmotic secretion reflects the primitive salivary function of lingual glands from which the salt-secreting capability in crocodylids was derived

    Cardiovascular Dynamics in Crocodylus porosus Breathing Air and During Voluntary Aerobic Dives

    Get PDF
    Pressure records from the heart and outflow vessels of the heart of Crocodylus porosus resolve previously conflicting results, showing that left aortic filling via the foramen of Panizza may occur during both cardiac diastole and systole. Filling of the left aorta during diastole, identified by the asynchrony and comparative shape of pressure events in the left and right aortae, is reconciled more easily with the anatomy, which suggests that the foramen would be occluded by opening of the pocket valves at the base of the right aorta during systole. Filling during systole, indicated when pressure traces in the left and right aortae could be superimposed, was associated with lower systemic pressures, which may occur at the end of a voluntary aerobic dive or can be induced by lowering water temperature or during a long forced dive. To explain this flexibility, we propose that the foramen of Panizza is of variable calibre. The presence of a 'right-left' shunt, in which increased right ventricular pressure leads to blood being diverted from the lungs and exiting the right ventricle via the left aorta, was found to be a frequent though not obligate correlate of voluntary aerobic dives. This contrasts with the previous concept of the shunt as a correlate of diving bradycardia. The magnitude of the shunt is difficult to assess but is likely to be relatively small. This information has allowed some new insights into the functional significance of the complex anatomy of the crocodilian heart and major blood vessels

    On a recent interpretation of star data

    No full text
    corecore