392 research outputs found

    Dimension of the Torelli group for Out(F_n)

    Full text link
    Let T_n be the kernel of the natural map from Out(F_n) to GL(n,Z). We use combinatorial Morse theory to prove that T_n has an Eilenberg-MacLane space which is (2n-4)-dimensional and that H_{2n-4}(T_n,Z) is not finitely generated (n at least 3). In particular, this recovers the result of Krstic-McCool that T_3 is not finitely presented. We also give a new proof of the fact, due to Magnus, that T_n is finitely generated.Comment: 27 pages, 9 figure

    A Spinning Anti-de Sitter Wormhole

    Get PDF
    We construct a 2+1 dimensional spacetime of constant curvature whose spatial topology is that of a torus with one asymptotic region attached. It is also a black hole whose event horizon spins with respect to infinity. An observer entering the hole necessarily ends up at a "singularity"; there are no inner horizons. In the construction we take the quotient of 2+1 dimensional anti-de Sitter space by a discrete group Gamma. A key part of the analysis proceeds by studying the action of Gamma on the boundary of the spacetime.Comment: Latex, 28 pages, 7 postscript figures included in text, a Latex file without figures can be found at http://vanosf.physto.se/~stefan/spinning.html Replaced with journal version, minor change

    Experience with the Quality Assurance of the Superconducting Electrical Circuits of the LHC Machine

    Get PDF
    The coherence between the powering reference database for the LHC and the Electrical Quality Assurance (ELQA) is guaranteed on the procedural level. However, a challenge remains the coherence between the database, the magnet test and assembly procedures, and the connection of all superconducting circuits in the LHC machine. In this paper, the methods, tooling, and procedures for the ELQA during the assembly phase of the LHC will be presented in view of the practical experience gained in the LHC tunnel. Some examples of detected polarity errors and electrical non-conformities will be presented. The parameters measured at ambient temperature, such as the dielectric insulation of circuits, will be discussed

    Witten's 2+1 gravity on R x (Klein bottle)

    Get PDF
    Witten's formulation of 2+1 gravity is investigated on the nonorientable three-manifold R x (Klein bottle). The gauge group is taken to consist of all four components of the 2+1 Poincare group. We analyze in detail several components of the classical solution space, and we show that from four of the components one can recover nondegenerate spacetime metrics. In particular, from one component we recover metrics for which the Klein bottles are spacelike. An action principle is formulated for bundles satisfying a certain orientation compatibility property, and the corresponding components of the classical solution space are promoted into a phase space. Avenues towards quantization are briefly discussed.Comment: 33 pages, REVTeX v3.0, 3 figures in a separate PostScript fil

    3-manifolds which are spacelike slices of flat spacetimes

    Full text link
    We continue work initiated in a 1990 preprint of Mess giving a geometric parameterization of the moduli space of classical solutions to Einstein's equations in 2+1 dimensions with cosmological constant 0 or -1 (the case +1 has been worked out in the interim by the present author). In this paper we make a first step toward the 3+1-dimensional case by determining exactly which closed 3-manifolds M^3 arise as spacelike slices of flat spacetimes, and by finding all possible holonomy homomorphisms pi_1(M^3) to ISO(3,1).Comment: 10 page

    Black Holes and Wormholes in 2+1 Dimensions

    Get PDF
    A large variety of spacetimes---including the BTZ black holes---can be obtained by identifying points in 2+1 dimensional anti-de Sitter space by means of a discrete group of isometries. We consider all such spacetimes that can be obtained under a restriction to time symmetric initial data and one asymptotic region only. The resulting spacetimes are non-eternal black holes with collapsing wormhole topologies. Our approach is geometrical, and we discuss in detail: The allowed topologies, the shape of the event horizons, topological censorship and trapped curves.Comment: 23 pages, LaTeX, 11 figure

    Loop Representations for 2+1 Gravity on a Torus

    Get PDF
    We study the loop representation of the quantum theory for 2+1 dimensional general relativity on a manifold, M=T2×RM = {\cal T}^2 \times {\cal R}, where T2{\cal T}^2 is the torus, and compare it with the connection representation for this system. In particular, we look at the loop transform in the part of the phase space where the holonomies are boosts and study its kernel. This kernel is dense in the connection representation and the transform is not continuous with respect to the natural topologies, even in its domain of definition. Nonetheless, loop representations isomorphic to the connection representation corresponding to this part of the phase space can still be constructed if due care is taken. We present this construction but note that certain ambiguities remain; in particular, functions of loops cannot be uniquely associated with functions of connections.Comment: 24 journal or 52 preprint pages, revtex, SU-GP-93/3-

    Electrical Quality Assurance of the Superconducting Circuits during LHC Machine Assembly

    Get PDF
    Based on the LHC powering reference database, all-together 1750 superconducting circuits were connected in the various cryogenic transfer lines of the LHC machine. Testing the continuity, magnet polarity, and the quality of the electrical insulation were the main tasks of the Electrical Quality Assurance (ELQA) activities during the LHC machine assembly. With the assembly of the LHC now complete, the paper reviews the work flow, resources, and the qualification results including the different types of electrical non-conformities

    New Loop Representations for 2+1 Gravity

    Get PDF
    Since the gauge group underlying 2+1-dimensional general relativity is non-compact, certain difficulties arise in the passage from the connection to the loop representations. It is shown that these problems can be handled by appropriately choosing the measure that features in the definition of the loop transform. Thus, ``old-fashioned'' loop representations - based on ordinary loops - do exist. In the case when the spatial topology is that of a two-torus, these can be constructed explicitly; {\it all} quantum states can be represented as functions of (homotopy classes of) loops and the scalar product and the action of the basic observables can be given directly in terms of loops.Comment: 28pp, 1 figure (postscript, compressed and uuencoded), TeX, Pennsylvania State University, CGPG-94/5-

    Magnet Acceptance and Allocation at the LHC Magnet Evaluation Board

    Get PDF
    The normal and superconducting magnets for the LHC ring have been carefully examined to insure that each of about 1900 assemblies is suitable for the operation in the accelerator. Hardware experts and accelerator physicists have contributed to this work that consisted in magnet acceptance, and sorting according to geometry, field quality and quench level. This paper gives a description of the magnet approval mechanism that has been running since four years, reporting in a concise summary the main results achieved
    corecore