3 research outputs found

    Design, Performance and Calibration of the CMS Forward Calorimeter Wedges

    Get PDF
    We report on the test beam results and calibration methods using charged particles of the CMS Forward Calorimeter (HF). The HF calorimeter covers a large pseudorapidity region (3\l |\eta| \le 5), and is essential for large number of physics channels with missing transverse energy. It is also expected to play a prominent role in the measurement of forward tagging jets in weak boson fusion channels. The HF calorimeter is based on steel absorber with embedded fused-silica-core optical fibers where Cherenkov radiation forms the basis of signal generation. Thus, the detector is essentially sensitive only to the electromagnetic shower core and is highly non-compensating (e/h \approx 5). This feature is also manifest in narrow and relatively short showers compared to similar calorimeters based on ionization. The choice of fused-silica optical fibers as active material is dictated by its exceptional radiation hardness. The electromagnetic energy resolution is dominated by photoelectron statistics and can be expressed in the customary form as a/\sqrt{E} + b. The stochastic term a is 198% and the constant term b is 9%. The hadronic energy resolution is largely determined by the fluctuations in the neutral pion production in showers, and when it is expressed as in the electromagnetic case, a = 280% and b = 11%

    Electromagnetic Secondaries and Punchthrough Effects in the CMS ME1/1

    No full text
    The aim of this work is to estimate the shower leakage from the CMS Endcap Hadron calorimeter (HE) due to electromagnetic secondaries and punch-through in the region of the ME1/1 Forward Muon Station. Two configurations are considered: with and without the CMS Endcap Electromagnetic calorimeter (EE). The experimental data has been taken during the combined beam test of CMS subdetectors (HE, ME, RPC, DT) at the CERN H2 beam facility in 2004. Serial CSC chambers (ready for installation in CMS) fully equipped with readout electronics have been exposed. Simulation of beam test setup has been performed using the GEANT4-based simulation package OSCAR
    corecore