33 research outputs found

    RESPONSE ANALYSIS OF THE KNEE JOINT IN FLEXION UNDER QUADRCEPS ACTIVATION

    Get PDF
    The human knee joint is a complex structure with interactions between muscle forces, ligaments, menisci and articulations at different regions. Proper management of rehabilitation and treatment programs requires a solid understanding of such interactions in intact and injured conditions. Towards this goal, a realistic nonlinear 3-D finite element model of the entire knee joint is developed. In this work, the ligament forces and contact stresses/areas are computed as the unconstrained joint is flexed from 0° to 90° ± a constant 137 N quadriceps force. Predictions support the coupling between various components as a function of quadriceps exertion and flexion angle. The model is promising in augmenting our understanding of the joint function leading to improved design for rehabilitation programs and replacement procedures in active patients

    Knee joint biomechanics in open-kinetic-chain flexion exercises

    No full text
    Background. Different rehabilitation exercises such as open-kinetic-chain flexion and extension exercises are currently employed in non-operative and post-operative managements of joint disorders. The challenge is to strengthen the muscles and to restore the near-normal function of the joint while protecting its components (e.g., the reconstructed ligament) from excessive stresses
    corecore