8 research outputs found
A hybrid model using data mining and multi-criteria decision-making methods for landslide risk mapping at Golestan Province, Iran
The accurate modeling of landslide risk is essential pre-requisite for the development of reliable landslide control and mitigation strategies. However, landslide risk depends on the poorly known environmental and socio-economic factors for regional patterns of landslide occurrence probability and vulnerability, which constitute still a matter of research. Here, a hybrid model is described that couples data mining and multi-criteria decision-making methods for hazard and vulnerability mapping and presents its application to landslide risk assessment in Golestan Province, Northeastern Iran. To this end, landslide probability is mapped using three state-of-the-art machine learning (ML) algorithms—Maximum Entropy, Support Vector Machine and Genetic Algorithm for Rule Set Production—and combine the results with Fuzzy Analytical Hierarchy Process computations of vulnerability to obtain the landslide risk map. Based on obtained results, a discussion is presented on landslide probability as a function of the main relevant human-environmental conditioning factors in Golestan Province. In particular, from the response curves of the machine learning algorithms, it can be found that the probability p of landslide occurrence decreases nearly exponentially with the distance x to the next road, fault, or river. Specifically, the results indicated that p≈exp(−λx) where the length scale λ is about 0.0797 km−1 for road, 0.108 km−1 for fault, and 0.734 km−1 0.734 km−1 for river. Furthermore, according to the results, p follows, approximately, a lognormal function of elevation, while the equation p=p0−K(θ−θ0)2 fits well the dependence of landslide modeling on the slope-angle θ, with p0≈0.64,θ0≈25.6∘and|K|≈6.6×10−4. However, the highest predicted landslide risk levels in Golestan Province are located in the south and southwest areas surrounding Gorgan City, owing to the combined effect of dense local human occupation and strongly landslide-prone environmental conditions. Obtained results provide insights for quantitative modeling of landslide risk, as well as for priority planning in landslide risk management
Joint Modeling of Precipitation and Temperature Using Copula Theory for Current and Future Prediction under Climate Change Scenarios in Arid Lands (Case Study, Kerman Province, Iran)
Precipitation and temperature are very important climatic parameters as their changes may affect life conditions. Therefore, predicting temporal trends of precipitation and temperature is very useful for societal and urban planning. In this research, in order to study the future trends in precipitation and temperature, we have applied scenarios of the fifth assessment report of IPCC. The results suggest that both parameters will be increasing in the studied area (Iran) in future. Since there is interdependence between these two climatic parameters, the independent analysis of the two fields will generate errors in the interpretation of model simulations. Therefore, in this study, copula theory was used for joint modeling of precipitation and temperature under climate change scenarios. By the joint distribution, we can find the structure of interdependence of precipitation and temperature in current and future under climate change conditions, which can assist in the risk assessment of extreme hydrological and meteorological events. Based on the results of goodness of fit test, the Frank copula function was selected for modeling of recorded and constructed data under RCP2.6 scenario and the Gaussian copula function was used for joint modeling of the constructed data under the RCP4.5 and RCP8.5 scenarios