9 research outputs found
Pyrroloquinoline quinone increases the expression and activity of Sirt1 and -3 genes in HepG2 cells.
Sirtuin (Sirt) 1 and Sirt 3 are nicotinamide adenine dinucleotide ((+))-dependent protein deacetylases that are important to a number of mitochondrial-related functions; thus, identification of sirtuin activators is important. Herein, we hypothesize that pyrroloquinoline quinone (PQQ) can act as a Sirt1/Sirt3 activator. In HepG2 cell cultures, PQQ increased the expression of Sirt1 and Sirt3 gene, protein, and activity levels (P < .05). We also observed a significant increase in nicotinamide phosphoribosyltransferase gene expression (as early as 18 hours) and increased NAD(+) activity at 24 hours. In addition, targets of Sirt1 and Sirt3 (peroxisome proliferator-activated receptor γ coactivator 1α, nuclear respiratory factor 1 and 2, and mitochondrial transcription factor A) were increased at 48 hours. This is the first report that demonstrates PQQ as an activator of Sirt1 and Sirt3 expression and activity, making it an attractive therapeutic agent for the treatment of metabolic diseases and for healthy aging. Based on our study and the available data in vivo, PQQ has the potential to serve as a therapeutic nutraceutical, when enhancing mitochondrial function
Mono-(2-ethylhexyl) phthalate induces trophoblast hypoxia and mitochondrial dysfunction through HIF-1α-miR-210-3p axis in HTR-8/SVneo cell line
The exposure to the ubiquitous phthalate metabolite mono-(2-ethylhexyl) phthalate (MEHP) is connected to dysregulated trophoblast function and placenta health; however, the underlying mechanisms preluding this scenario remain to be elucidated. In this study, we explored the hypoxemic effects of MEHP on a human placental first-trimester trophoblast cell line (HTR-8/Svneo). MEHP-treated trophoblast cells displayed significantly increased levels of oxidative stress and hypoxia-inducible factor-1 alpha (HIF-1α) attributed by the induction of hypoxia. Further, HIF-1α exhibited higher DNA binding activity and upregulated gene expression of its downstream target vascular endothelial growth factor A (VEGFA). The hypoxia-induced microRNA miR-210-3p was also significantly increased upon MEHP treatment followed by disrupted mitochondrial ATP generation and membrane potential. This was identified to possibly be facilitated by lowered mitochondrial DNA copy number and inhibited expression of electron transport chain subunits, such as mitochondrial complex-IV. These results suggest potential adverse effects of MEHP exposure in a trophoblast cell line mediated by HIF-1α and the epigenetic modulator miR-210-3p. Chronic placental hypoxia and oxidative stress have long been implicated in the pathogenesis of pregnancy complications such as preeclampsia. As we’ve revealed genetic and epigenetic factors underscoring a potential mechanism induced by MEHP, this brings to light another significant implication of phthalate exposure on maternal and fetal health
High-Fat-High-Fructose Diet Elicits Brown Adipocyte Dysfunction through miRNA-103 Induced miRNA Biogenesis Pathway
Background: Obesity is a critical public health concern with its prevalence growing at an alarming rate worldwide. The Western diet that typically includes high-fat or high-fructose components is one of the leading contributing factors of obesity. Recent findings demonstrate the essential role of BAT in regulating whole-body metabolism. However, the explicit mechanism through which BAT maintains homeostasis is still unknown. Methods: Six-week-old C57BL/6 male mice were fed either a low-fat diet (LFD) or a high-fat high-fructose diet (HFHFD) for 4, 12, and 20 weeks. Results: We observed a significant increase in BAT weight under HFHFD along with BAT whitening in a time-dependent manner. This was also accompanied by a significant decrease in UCP1 and PGC1α protein, as well as a significant increase in the Bax/Bcl-2 ratio as early as 12 weeks, indicating increased apoptosis under HFHFD. Interestingly, miRNA-103 expression that holds a seed sequence within the miRNA biogenesis machinery, Dicer, was significantly upregulated after 12 and 20 weeks of HFHFD. Dicer and another biogenesis regulator, TRBP2, exhibited significant upregulation at 4 weeks of HFHFD. Conversely, those gene expressions were significantly downregulated at 12 and 20 weeks of HFHFD, followed by a significant decrease in the protein level at 12 weeks. To confirm the mechanistic connection, miRNA-103 knockdown in vitro significantly upregulated Dicer and the TRBP2 gene. However, only Dicer exhibited a significant increase at the translational level. Conclusion: Overall, we conclude that HFHFD may elicit BAT dysfunction by inhibiting Dicer via miRNA-103
Mono-(2-ethylhexyl) Phthalate Increases Oxidative Stress Responsive miRNAs in First Trimester Placental Cell Line HTR8/SVneo
Phthalates, an endocrine
disruptor group, cause oxidative stress
(OS) in the placenta. However, no studies have reported OS-related
miRNAs induced by phthalates. In the present study, we demonstrate
that mono-(2-ethylhexyl) phthalate (MEHP) induces OS responsive miR-17-5p,
miR-155-5p, and miR-126-3p in HTR8/SVneo in a dose- and time-dependent
manner. Furthermore, MEHP altered the expression of phosphoinositide-3-kinase
regulatory subunit 1α, phosphatase and tensin homolog, CDKN2A
interacting protein, superoxide dismutase 2, and 3β-hydroxysterol-D24
reductase, which are involved in OS and predicted to be regulated
by these miRNAs. Our results suggest that placental exposure to MEHP
may result in aberrant miRNA expression leading to pregnancy complications
Recommended from our members
Pyrroloquinoline quinone increases the expression and activity of Sirt1 and -3 genes in HepG2 cells.
Sirtuin (Sirt) 1 and Sirt 3 are nicotinamide adenine dinucleotide ((+))-dependent protein deacetylases that are important to a number of mitochondrial-related functions; thus, identification of sirtuin activators is important. Herein, we hypothesize that pyrroloquinoline quinone (PQQ) can act as a Sirt1/Sirt3 activator. In HepG2 cell cultures, PQQ increased the expression of Sirt1 and Sirt3 gene, protein, and activity levels (P < .05). We also observed a significant increase in nicotinamide phosphoribosyltransferase gene expression (as early as 18 hours) and increased NAD(+) activity at 24 hours. In addition, targets of Sirt1 and Sirt3 (peroxisome proliferator-activated receptor γ coactivator 1α, nuclear respiratory factor 1 and 2, and mitochondrial transcription factor A) were increased at 48 hours. This is the first report that demonstrates PQQ as an activator of Sirt1 and Sirt3 expression and activity, making it an attractive therapeutic agent for the treatment of metabolic diseases and for healthy aging. Based on our study and the available data in vivo, PQQ has the potential to serve as a therapeutic nutraceutical, when enhancing mitochondrial function
Effect of Chronic Western Diets on Non-Alcoholic Fatty Liver of Male Mice Modifying the PPAR-γ Pathway via miR-27b-5p Regulation
Western diets contribute to metabolic diseases. However, the effects of various diets and epigenetic mechanisms are mostly unknown. Here, six week-old C57BL/6J male and female mice were fed with a low-fat diet (LFD), high-fat diet (HFD), and high-fat high-fructose diet (HFD-HF) for 20 weeks. We determined that HFD-HF or HFD mice experienced significant metabolic dysregulation compared to the LFD. HFD-HF and HFD-fed male mice showed significantly increased body weight, liver size, and fasting glucose levels with downregulated PPARγ, SCD1, and FAS protein expression. In contrast, female mice were less affected by HFD and HFD-HF. As miR-27b contains a seed sequence in PPARγ, it was discovered that these changes are accompanied by male-specific upregulation of miR-27b-5p, which is even more pronounced in the HFD-HF group (p < 0.01 vs. LFD) compared to the HFD group (p < 0.05 vs. LFD). Other miR-27 subtypes were increased but not significantly. HFD-HF showed insignificant changes in fibrosis markers when compared to LFD. Interestingly, fat ballooning in hepatocytes was increased in HFD-fed mice compared to HFD-HF fed mice, however, the HFD-HF liver showed an increase in the number of small cells. Here, we concluded that chronic Western diet-composition administered for 20 weeks may surpass the non-alcoholic fatty liver (NAFL) stage but may be at an intermediate stage between fatty liver and fibrosis via miR-27b-5p-induced PPARγ downregulation
Regulation of Adipocyte Differentiation by the Zinc Finger Protein ZNF638*
Zinc finger proteins constitute the largest family of transcription regulators in eukaryotes. These factors are involved in diverse processes in many tissues, including development and differentiation. We report here the characterization of the zinc finger protein ZNF638 as a novel regulator of adipogenesis. ZNF638 is induced early during adipocyte differentiation. Ectopic expression of ZNF638 increases adipogenesis in vitro, whereas its knockdown inhibits differentiation and decreases the expression of adipocyte-specific genes. ZNF638 physically interacts and transcriptionally cooperates with CCAAT/enhancer-binding protein (C/EBP) β and C/EBPδ. This interaction leads to the expression of peroxisome proliferator-activated receptor γ, which is the key regulator of adipocyte differentiation. In summary, ZNF638 is a novel and early regulator of adipogenesis that works as a transcription cofactor of C/EBPs
Serum- and Glucocorticoid-Inducible Kinase 1 (SGK1) Regulates Adipocyte Differentiation via Forkhead Box O1
The serum and glucocorticoid-inducible kinase 1 (SGK1) is an inducible kinase the physiological function of which has been characterized primarily in the kidney. Here we show that SGK1 is expressed in white adipose tissue and that its levels are induced in the conversion of preadipocytes into fat cells. Adipocyte differentiation is significantly diminished via small interfering RNA inhibition of endogenous SGK1 expression, whereas ectopic expression of SGK1 in mesenchymal precursor cells promotes adipogenesis. The SGK1-mediated phenotypic effects on differentiation parallel changes in the mRNA levels for critical regulators and markers of adipogenesis, such as peroxisome proliferator-activated receptor γ, CCAAT enhancer binding protein α, and fatty acid binding protein aP2. We demonstrate that SGK1 affects differentiation by direct phosphorylation of Foxo1, thereby changing its cellular localization from the nucleus to the cytosol. In addition we show that SGK1−/− cells are unable to relocalize Foxo1 to the cytosol in response to dexamethasone. Together these results show that SGK1 influences adipocyte differentiation by regulating Foxo1 phosphorylation and reveal a potentially important function for this kinase in the control of fat mass and function