38 research outputs found

    Does the selective serotonin reuptake inhibitor (SSRI) fluoxetine modify canine anxiety related behaviour?

    Get PDF
    PICO question Does administration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine reduce the severity and / or frequency of some anxiety related behaviours in companion dogs, of at least 8 months of age, when compared with no pharmacological treatment?   Clinical bottom line Category of research question Treatment The number and type of study designs reviewed Two studies, both randomised, were critically appraised. Each had a placebo control group and the dog's owners were blinded to the treatments Strength of evidence Moderate Outcomes reported Both studies provide moderate evidence that fluoxetine, when dispensed at 1–2 mg/kg per day by oral administration and not involving a behavioural modification program for the patient, may reduce some behaviours associated with separation anxiety and / or compulsive disorders. Both studies indicate that a reduction in some unwanted behaviours may be observed after 1 week of fluoxetine medication. Both studies recommend that behavioural and environmental modifications are important adjuncts to pharmacologic treatment of dogs with either compulsive disorders or separation anxiety. Both studies also report that some dogs treated with fluoxetine experienced anorexia / decreased appetite and lethargy, although most of these effects were transient Conclusion The clinical recommendation is that fluoxetine at 1–2 mg/kg administered orally, once daily, may be beneficial in reducing the severity of some canine anxiety related behaviours   How to apply this evidence in practice The application of evidence into practice should take into account multiple factors, not limited to: individual clinical expertise, patient’s circumstances and owners’ values, country, location or clinic where you work, the individual case in front of you, the availability of therapies and resources. Knowledge Summaries are a resource to help reinforce or inform decision making. They do not override the responsibility or judgement of the practitioner to do what is best for the animal in their care

    Pharmacokinetic profile of enrofloxacin and its metabolite ciprofloxacin in Asian house geckos (Hemidactylus frenatus) after single-dose oral administration of enrofloxacin

    Get PDF
    The pharmacokinetics of enrofloxacin and its active metabolite ciprofloxacin were determined following oral administration in 21 Asian house geckos (Hemidactylus frenatus) at a dose of 10 mg/kg. Changes in enrofloxacin and ciprofloxacin plasma concentrations were quantified at regular intervals over 72 h (1, 2, 6, 12, 24, 48, and 72 h). Samples were analysed by high-pressure liquid chromatography (HPLC) and the enrofloxacin pharmacokinetic data underwent a two-compartment analysis. Due to the limited ciprofloxacin plasma concentrations above the lower limit of quantification (LLOQ), the ciprofloxacin data underwent non-compartment analysis and the half-life was determined by the Lineweaver-Burke plot and analysis. The enrofloxacin and ciprofloxacin mean half-lives (t½) were 0.95 h (α) / 24.36 h (β), and 11.06 h respectively, area under the curve (AUC0-24h) were 60.56 and 3.14 µg/mL*h, respectively, maximum concentrations (Cmax) were 12.31 and 0.24 µg/mL, respectively, and time required to reach the Cmax (Tmax) were 1 and 2 h respectively. Enrofloxacin was minimally converted to the active metabolite ciprofloxacin, with ciprofloxacin concentrations contributing only 4.91% of the total fluoroquinolone concentrations (AUC0-24h). Based on the pharmacokinetic indices when using susceptibility breakpoints when determined at mammalian body temperature it is predicted that single oral administration of enrofloxacin (10 mg/kg) would result in plasma concentrations effective against susceptible bacterial species inhibited by an enrofloxacin MIC ≤ 0.5 µg/mL in vitro, but additional studies will be required to determine its efficacy in vivo

    Pharmacokinetic Profile of Fentanyl in the Koala (Phascolarctos cinereus) after Intravenous Administration, and Absorption via a Transdermal Patch

    No full text
    Fentanyl was administered as a single intravenous bolus injection at 5 µg/kg to five koalas and fentanyl plasma concentrations for a minimum of 2 h were quantified by an enzyme-linked immunosorbent assay (ELISA). The median (range) fentanyl elimination half-life and clearance were 0.53 (0.38–0.91) h, and 10.01 (7.03–11.69) L/kg/h, respectively. Assuming an analgesic therapeutic plasma concentration of 0.23 ng/mL (extrapolated from human studies), an intravenous constant infusion rate was estimated at approximately between 1.7 to 2.7 µg/kg/h (using the clearance 95% confidence intervals). A transdermal fentanyl patch was applied to the antebrachium of an additional two koalas for 72 h. Fentanyl plasma concentrations were determined during the patch application and after patch removal at 80 h. The fentanyl plasma concentration was greater than 0.23 ng/mL after 12 to 16 h. While the patch was applied, the maximum fentanyl concentration was approximately 0.7 ng/mL from 32 to 72 h. Fentanyl plasma concentrations increased to 0.89 ng/mL 1 h after the patch was removed, and then decreased to a mean of 0.47 ng/mL at 80 h. The transdermal fentanyl patch is likely to provide some level of analgesia but should be initially co-administered with another faster acting analgesic for the first 12 h

    Pharmacokinetic profile of injectable tramadol in the koala (Phascolarctos cinereus) and prediction of its analgesic efficacy.

    No full text
    Tramadol is used as an analgesic in humans and some animal species. When tramadol is administered to most species it undergoes metabolism to its main metabolites M1 or O-desmethyltramadol, and M2 or N-desmethyltramadol, and many other metabolites. This study describes the pharmacokinetic profile of tramadol when a single subcutaneous bolus of 2 mg/kg was initially administered to two koalas. Based on the results of these two koalas, subsequently 4 mg/kg as a single subcutaneous injection, was administered to an additional four koalas. M1 is recognised as an active metabolite and has greater analgesic activity than tramadol, while M2 is considered inactive. A liquid chromatography assay to quantify tramadol, M1 and M2 in koala plasma was developed and validated. Liquid chromatography-mass spectrometry confirmed that M1 had been identified. Additionally, the metabolite didesmethyltramadol was identified in chromatograms of two of the male koalas. When 4 mg/kg tramadol was administered, the median half-life of tramadol and M1 were 2.89 h and 24.69 h, respectively. The M1 plasma concentration remained well above the minimally effective M1 plasma concentration in humans (approximately 36 ng/mL) over 12 hours. The M1 plasma concentration, when tramadol was administered at 2 mg/kg, did not exceed 36 ng/mL at any time-point. When tramadol was administered at 2 mg/kg and 4 mg/kg the area under the curve M1: tramadol ratios were 0.33 and 0.50, respectively. Tramadol and M1 binding to plasma protein were determined using thawed, frozen koala plasma and the mean binding was 20% and 75%, respectively. It is concluded that when tramadol is administered at 4 mg/kg as a subcutaneous injection to the koala, it is predicted to have some analgesic activity

    In vitro hepatic metabolism of mefloquine using microsomes from cats, dogs and the common brush-tailed possum (Trichosurus vulpecula).

    No full text
    Feline infectious peritonitis (FIP) is a systemic, fatal, viral-induced, immune-mediated disease of cats caused by feline infectious peritonitis virus (FIPV). Mefloquine, a human anti-malarial agent, has been shown to inhibit FIPV in vitro. As a first step to evaluate its efficacy and safety profile as a potential FIP treatment for cats, mefloquine underwent incubation in feline, canine and common brush-tailed possum microsomes and phase I metabolism cofactors to determine its rate of phase I depletion. Tramadol was used as a phase I positive control as it undergoes this reaction in both dogs and cats. Using the substrate depletion method, the in vitro intrinsic clearance (mean ± S.D.) of mefloquine by pooled feline and common brush-tailed possum microsomes was 4.5 ± 0.35 and 18.25 ± 3.18 μL/min/mg protein, respectively. However, phase I intrinsic clearance was too slow to determine with canine microsomes. Liquid chromatography-mass spectrometry (LC-MS) identified carboxymefloquine in samples generated by feline microsomes as well as negative controls, suggesting some mefloquine instability. Mefloquine also underwent incubation with feline, canine and common brush-tailed possum microsomes and phase II glucuronidative metabolism cofactors. O-desmethyltramadol (ODMT or M1) was used as a positive control as it undergoes a phase II glucuronidation reaction in these species. The rates of phase II mefloquine depletion by microsomes by all three species were too slow to estimate. Therefore mefloquine likely undergoes phase I hepatic metabolism catalysed by feline and common brush-tailed possum microsomes but not phase II glucuronidative metabolism in all three species and mefloquine is not likely to have delayed elimination in cats with clinically normal, hepatic function

    Pharmacokinetic Profile of Oral Administration of Mefloquine to Clinically Normal Cats: A Preliminary In-Vivo Study of a Potential Treatment for Feline Infectious Peritonitis (FIP)

    No full text
    The pharmacokinetic profile of mefloquine was investigated as a preliminary study towards a potential treatment for feline coronavirus infections (such as feline infectious peritonitis) or feline calicivirus infections. Mefloquine was administered at 62.5 mg orally to seven clinically healthy cats twice weekly for four doses and mefloquine plasma concentrations over 336 h were measured using high pressure liquid chromatography (HPLC). The peak plasma concentration (Cmax) after a single oral dose of mefloquine was 2.71 ug/mL and time to reach Cmax (Tmax) was 15 h. The elimination half-life was 224 h. The plasma concentration reached a higher level at 4.06 ug/mL when mefloquine was administered with food. Adverse effects of dosing included vomiting following administration without food in some cats. Mild increases in serum symmetric dimethylarginine (SDMA), but not creatinine, concentrations were observed. Mefloquine may provide a safe effective treatment for feline coronavirus and feline calicivirus infections in cats

    Assay validation and determination of in vitro binding of mefloquine to plasma proteins from clinically normal and FIP-affected cats

    No full text
    The antimalarial agent mefloquine is currently being investigated for its potential to inhibit feline coronavirus and feline calicivirus infections. A simple, high pressure liquid chromatography assay was developed to detect mefloquine plasma concentrations in feline plasma. The assay's lower limit of quantification was 250 ng/mL. The mean ± standard deviation intra- and inter-day precision expressed as coefficients of variation were 6.83 ± 1.75 and 5.33 ± 1.37%, respectively, whereas intra- and inter-day accuracy expressed as a percentage of the bias were 11.40 ± 3.73 and 10.59 ± 3.88%, respectively. Accordingly, this validated assay should prove valuable for future in vivo clinical trials of mefloquine as an antiviral agent against feline coronavirus and feline calicivirus. However, the proportion of mefloquine binding to feline plasma proteins has not been reported. The proportion of drug bound to plasma protein binding is an important concept when developing drug dosing regimens. As cats with feline infectious peritonitis (FIP) demonstrate altered concentrations of plasma proteins, the proportion of mefloquine binding to plasma proteins in both clinically normal cats and FIP-affected cats was also investigated. An in vitro method using rapid equilibrium dialysis demonstrated that mefloquine was highly plasma protein bound in both populations (on average > 99%)

    Assessments of feline plasma biochemistry reference intervals for three in-house analysers and a commercial laboratory analyser.

    No full text
    For each species, the manufacturers of in-house analysers (and commercial laboratories) provide standard reference intervals (RIs) that do not account for any differences such as geographical population differences and do not overtly state the potential for variation between results obtained from serum or plasma. Additionally, biases have been demonstrated for in-house analysers which result in different RIs for each different type of analyser. The objective of this study was to calculate RIs (with 90% confidence intervals [CIs]) for 13 biochemistry analytes when tested on three commonly used in-house veterinary analysers, as well as a commercial laboratory analyser. The calculated RIs were then compared with those provided by the in-house analyser manufacturers and the commercial laboratory. Plasma samples were collected from 53 clinically normal cats. After centrifugation, plasma was divided into four aliquots; one aliquot was sent to the commercial laboratory and the remaining three were tested using the in-house biochemistry analysers. The distribution of results was used to choose the appropriate statistical technique for each analyte from each analyser to calculate RIs. Provided reference limits were deemed appropriate if they fell within the 90% CIs of the calculated reference limits. Transference validation was performed on provided and calculated RIs. Twenty-nine of a possible 102 provided reference limits (28%) were within the calculated 90% CIs. To ensure proper interpretation of laboratory results, practitioners should determine RIs for their practice populations and/or use reference change values when assessing their patients’ clinical chemistry results
    corecore