4 research outputs found

    XLMR in MRX families 29, 32, 33 and 38 results from the dup24 mutation in the ARX (Aristaless related homeobox) gene

    Get PDF
    BACKGROUND: X-linked mental retardation (XLMR) is the leading cause of mental retardation in males. Mutations in the ARX gene in Xp22.1 have been found in numerous families with both nonsyndromic and syndromic XLMR. The most frequent mutation in this gene is a 24 bp duplication in exon 2. Based on this fact, a panel of XLMR families linked to Xp22 was tested for this particular ARX mutation. METHODS: Genomic DNA from XLMR families linked to Xp22.1 was amplified for exon 2 in ARX using a Cy5 labeled primer pair. The resulting amplicons were sized using the ALFexpress automated sequencer. RESULTS: A panel of 11 families with X-linked mental retardation was screened for the ARX 24dup mutation. Four nonsyndromic XLMR families – MRX29, MRX32, MRX33 and MRX38 – were found to have this particular gene mutation. CONCLUSION: We have identified 4 additional XLMR families with the ARX dup24 mutation from a panel of 11 XLMR families linked to Xp22.1. This finding makes the ARX dup24 mutation the most common mutation in nonsyndromic XLMR families linked to Xp22.1. As this mutation can be readily tested for using an automated sequencer, screening should be considered for any male with nonsyndromic MR of unknown etiology

    Microfibril-associated glycoprotein-2 (MAGP-2) is specifically associated with fibrillin-containing microfibrils but exhibits more restricted patterns of tissue localization and developmental expression than its structural relative MAGP-1

    No full text
    SUMMARY We developed an affinity-purified anti-MAGP-2 peptide antibody that specifically identified MAGP-2 on Western blots of purified matrix proteins and extracts of nuchal ligament. Immunolocalization studies on tissues from a 210-day-old fetus and a mature bovine showed that MAGP-2 was located in similar regions to MAGP-1 and fibrillin-1 but that the distribution of MAGP-2 was more restricted. In fetal nuchal ligament, skeletal muscle, and spleen the distribution of MAGP-2 was indistinguishable from that of MAGP-1. In contrast to MAGP-1, MAGP-2 was not detected in the medial layer of fetal thoracic aorta and in much of the peritubular matrix of fetal and mature kidney and in the mature ocular zonule. Some differences in the immunolocalization patterns were also evident in fetal lung, cartilage, skin, and heart. Immunoelectron microscopy confirmed that MAGP-2 was specifically associated with fibrillin-containing microfibrils in nuchal ligament, dermis, adventitia of aorta, glomerular mesangium and perimysium. Northern blotting of RNA from tissues of a 210-day-old fetus indicated that steady-state MAGP-2 mRNA levels were highest in nuchal ligament. Significant expression was also detected in lung, heart, skeletal muscle, skin, and Achilles tendon. The tissue pattern of MAGP-2 expression differed significantly from that of MAGP-1. MAGP-2 expression appeared to be higher in nuchal ligament, heart, and skeletal muscle and lower in aorta and kidney. In nuchal ligament, MAGP-2 mRNA expression appeared to peak around 180 days of fetal development, which correlates with the period of onset of elastinogenesis in this tissue. Overall, the immunolocalization and expression patterns of MAGP-2 appeared to be distinct from those of other microfibrillar components. This is consistent with the view that MAGP-2 plays a unique role in the biology of the microfibrils, perhaps by mediating their interaction with cell surfaces at specific stages of development and differentiation.Mark A. Gibson, Merran L. Finnis, Jaliya S. Kumaratilake, and Edward G. Clear

    Ohtahara syndrome in a family with an ARX protein truncation mutation (c.81C>G/p.Y27X)

    No full text
    Aristaless-related homeobox (ARX) gene mutations cause a diverse spectrum of disorders of the human brain, including lissencephaly, various forms of epilepsy and non-syndromic mental retardation. We have identified a novel mutation, c.81C>G (p.Y27X), within the ARX gene in a family with two affected male cousins. One of the boys was diagnosed with an early infantile epileptic encephalopathy also known as Ohtahara syndrome, whereas his cousin had been diagnosed with West syndrome (WS). Both patients have normal genitalia and neither have lissencephaly. The ARX mutation identified is predicted to yield a severely truncated protein of only 26 amino acids and can be considered as a null mutation. Somewhat surprisingly, however, it does not yield the X-linked lissencephaly with ambiguous genitalia (XLAG) syndrome. We proposed that the ARX mRNA translation re-initiated at the next AUG codon at position c.121–123 (aa 41) and, thus, partly rescued these patients from XLAG. Our in vitro studies show that this N-terminally truncated ARX protein (p.M41_C562) is detected by western immunoblot in lysates from cells transiently transfected with an ARX over-expression construct containing the c.81C>G mutation. Although these findings widen the spectrum of clinical phenotypes because of mutations in the ARX gene, they also emphasize the molecular pathogenetic effect of individual mutations as well as the effect of genetic background resulting in intrafamilial clinical heterogeneity for these mutations
    corecore