2 research outputs found
Linearly independent pure-state decomposition and quantum state discrimination
We put the pure-state decomposition mathematical property of a mixed state to
a physical test. We begin by characterizing all the possible decompositions of
a rank-two mixed state by means of the complex overlap between two involved
states. The physical test proposes a scheme of quantum state recognition of one
of the two linearly independent states which arise from the decomposition. We
find that the two states associated with the balanced pure-state decomposition
have the smaller overlap modulus and therefore the smallest probability of
being discriminated conclusively, while in the nonconclusive scheme they have
the highest probability of having an error. In addition, we design an
experimental scheme which allows to discriminate conclusively and optimally two
nonorthogonal states prepared with different a priori probabilities. Thus, we
propose a physical implementation for this linearly independent pure-state
decomposition and state discrimination test by using twin photons generated in
the process of spontaneous parametric down conversion. The information-state is
encoded in one photon polarization state whereas the second single-photon is
used for heralded detection.Comment: 6 pages, 5 figures, Submitted to Phys. Rev.