5,993 research outputs found
Observation of Surface-Avoiding Waves: A New Class of Extended States in Periodic Media
Coherent time-domain optical experiments on GaAs-AlAs superlattices reveal
the exis-tence of an unusually long-lived acoustic mode at ~ 0.6 THz, which
couples weakly to the environment by evading the sample boundaries. Classical
as well as quantum states that steer clear of surfaces are generally shown to
occur in the spectrum of periodic struc-tures, for most boundary conditions.
These surface-avoiding waves are associated with frequencies outside forbidden
gaps and wavevectors in the vicinity of the center and edge of the Brillouin
zone. Possible consequences for surface science and resonant cavity
ap-plications are discussed.Comment: 16 pages, 3 figure
Generation and remote detection of THz sound using semiconductor superlattices
The authors introduce a novel approach to study the propagation of high
frequency acoustic phonons in which the generation and detection involves two
spatially separated superlattices apart. Propagating modes
of frequencies up to escape from the superlattice where they
are generated and reach the second superlattice where they are detected. The
measured frequency spectrum reveals finite size effects, which can be accounted
for by a continuum elastic model.Comment: Submitted to Applied Physics Letter
Distinguishing Among Strong Decay Models
Two competing models for strong hadronic decays, the and
models, are currently in use.
Attempts to rule out one or the other have been hindered by a poor
understanding of final state interactions and by ambiguities in the treatment
of relativistic effects.
In this article we study meson decays in both models, focussing on certain
amplitude ratios for which the relativistic uncertainties largely cancel out
(notably the ratios in and
), and using a Quark Born Formalism to estimate the
final state interactions.
We find that the model is strongly favoured.
In addition, we predict a amplitude ratio of for the decay
.
We also study the parameter-dependence of some individual amplitudes (as
opposed to amplitude ratios), in an attempt to identify a ``best'' version of
the model.Comment: 20 pages, uuencoded postscript file with 7 figures, MIT-CTP-2295;
CMU-HEP94-1
Thermodynamical fingerprints of fractal spectra
We investigate the thermodynamics of model systems exhibiting two-scale
fractal spectra. In particular, we present both analytical and numerical
studies on the temperature dependence of the vibrational and electronic
specific heats. For phonons, and for bosons in general, we show that the
average specific heat can be associated to the average (power law) density of
states. The corrections to this average behavior are log-periodic oscillations
which can be traced back to the self-similarity of the spectral staircase. In
the electronic case, even if the thermodynamical quantities exhibit a strong
dependence on the particle number, regularities arise when special cases are
considered. Applications to substitutional and hierarchical structures are
discussed.Comment: 8 latex pages, 9 embedded PS figure
One-dimensional fermions with incommensuration
We study the spectrum of fermions hopping on a chain with a weak
incommensuration close to dimerization; both q, the deviation of the wave
number from pi, and delta, the strength of the incommensuration, are small. For
free fermions, we use a continuum Dirac theory to show that there are an
infinite number of bands which meet at zero energy as q approaches zero. In the
limit that the ratio q/ \delta --> 0, the number of states lying inside the q=0
gap is nonzero and equal to 2 \delta /\pi^2. Thus the limit q --> 0 differs
from q=0; this can be seen clearly in the behavior of the specific heat at low
temperature. For interacting fermions or the XXZ spin-1/2 chain close to
dimerization, we use bosonization to argue that similar results hold; as q -->
0, we find a nontrivial density of states near zero energy. However, the limit
q --> 0 and q=0 give the same results near commensurate wave numbers which are
different from pi. We apply our results to the Azbel-Hofstadter problem of
electrons hopping on a two-dimensional lattice in the presence of a magnetic
field. Finally, we discuss the complete energy spectrum of noninteracting
fermions with incommensurate hopping by going up to higher orders in delta.Comment: Revtex, 23 pages including 7 epsf figures; this is a greatly expanded
version of cond-mat/981133
Interplay between quasi-periodicity and disorder in quantum spin chains in a magnetic field
We study the interplay between disorder and a quasi periodic coupling array
in an external magnetic field in a spin-1/2 XXZ chain. A simple real space
decimation argument is used to estimate the magnetization values where plateaux
show up. The latter are in good agreement with exact diagonalization results on
fairly long XX chains. Spontaneous susceptibility properties are also studied,
finding a logarithmic behaviour similar to the homogeneously disordered case.Comment: 5 RevTeX pages, 5 Postscript figures include
Photoinduced suppression of the ferroelectric instability in PbTe
The interactions between electrons and phonons drive a large array of
technologically relevant material properties including ferroelectricity,
thermoelectricity, and phase-change behaviour. In the case of many group IV-VI,
V, and related materials, these interactions are strong and the materials exist
near electronic and structural phase transitions. Their close proximity to
phase instability produces a fragile balance among the various properties. The
prototypical example is PbTe whose incipient ferroelectric behaviour has been
associated with large phonon anharmonicity and thermoelectricity. Experimental
measurements on PbTe reveal anomalous lattice dynamics, especially in the soft
transverse optical phonon branch. This has been interpreted in terms of both
giant anharmonicity and local symmetry breaking due to off-centering of the Pb
ions. The observed anomalies have prompted renewed theoretical and
computational interest, which has in turn revived focus on the extent that
electron-phonon interactions drive lattice instabilities in PbTe and related
materials. Here, we use Fourier-transform inelastic x-ray scattering (FT-IXS)
to show that photo-injection of free carriers stabilizes the paraelectric
state. With support from constrained density functional theory (CDFT)
calculations, we find that photoexcitation weakens the long-range forces along
the cubic direction tied to resonant bonding and incipient ferroelectricity.
This demonstrates the importance of electronic states near the band edges in
determining the equilibrium structure.Comment: 9 page, 3 figure
- …