171 research outputs found

    DNase I-hypersensitive sites surround the mouse acetylcholine receptor delta-subunit gene.

    Full text link

    Mutational analysis of muscle nicotinic acetylcholine receptor subunit assembly.

    Full text link

    Transforming growth factor-β-regulated miR-24 promotes skeletal muscle differentiation

    Get PDF
    MicroRNAs (miRNAs) have recently been proposed as a versatile class of molecules involved in regulation of a variety of biological processes. However, the role of miRNAs in TGF-β-regulated biological processes is poorly addressed. In this study, we found that miR-24 was upregulated during myoblast differentiation and could be inhibited by TGF-β1. Using both a reporter assay and Northern blot analysis, we showed that TGF-β1 repressed miR-24 transcription which was dependent on the presence of Smad3 and a Smads binding site in the promoter region of miR-24. TGF-β1 was unable to inhibit miR-24 expression in Smad3-deficient myoblasts, which exhibited accelerated myogenesis. Knockdown of miR-24 led to reduced expression of myogenic differentiation markers in C2C12 cells, while ectopic expression of miR-24 enhanced differentiation, and partially rescued inhibited myogenesis by TGF-β1. This is the first study demonstrating a critical role for miRNAs in modulating TGF-β-dependent inhibition of myogenesis, and provides a novel mechanism of the genetic regulation of TGF-β signaling during skeletal muscle differentiation

    The Role of Muscle microRNAs in Repairing the Neuromuscular Junction

    Get PDF
    microRNAs have been implicated in mediating key aspects of skeletal muscle development and responses to diseases and injury. Recently, we demonstrated that a synaptically enriched microRNA, miR-206, functions to promote maintenance and repair of the neuromuscular junction (NMJ); in mutant mice lacking miR-206, reinnervation is impaired following nerve injury and loss of NMJs is accelerated in a mouse model of amyotrophic lateral sclerosis (ALS). Here, we asked whether other microRNAs play similar roles. One attractive candidate is miR-133b because it is in the same transcript that encodes miR-206. Like miR-206, miR-133b is concentrated near NMJs and induced after denervation. In miR-133b null mice, however, NMJ development is unaltered, reinnervation proceeds normally following nerve injury, and disease progression is unaffected in the SOD1(G93A) mouse model of ALS. To determine if miR-206 compensates for the loss of miR-133b, we generated mice lacking both microRNAs. The phenotype of these double mutants resembled that of miR-206 single mutants. Finally, we used conditional mutants of Dicer, an enzyme required for the maturation of most microRNAs, to generate mice in which microRNAs were depleted from skeletal muscle fibers postnatally, thus circumventing a requirement for microRNAs in embryonic muscle development. Reinnervation of muscle fibers following injury was impaired in these mice, but the defect was similar in magnitude to that observed in miR-206 mutants. Together, these results suggest that miR-206 is the major microRNA that regulates repair of the NMJ following nerve injury.National Institutes of Health (U.S.) (NIH grant R01AG032322)National Institute of Neurological Disorders and Stroke (U.S.) (NRSA Postdoctoral Fellowship from NINDS/NIH)Ruth K. Broad Biomedical Research Foundation (Fellowship)McGovern Institute for Brain Research at MIT (Poitras Center for Affective Disorders Research
    • …
    corecore