3,449 research outputs found

    Solitary fibrous tumor of the pleura in a 6-year-old boy

    Get PDF

    Modelling of thermo-chemical properties over the sub-solidus MgO–FeO binary, as a function of iron spin configuration, composition and temperature

    Get PDF
    Thermo-chemical properties and T–X phase relations diagram of the (Mg,Fe)O solid solution are modelled using mixing Helmholtz energy, ΔF(T,x)mixing, calculated by quantum mechanical and semi-empirical techniques. The sub-solidus MgO–FeO binary has been explored as a function of composition, with iron either in high-spin (HS) or low-spin (LS) configuration. Only the HS model provides physically sound results at room pressure, yielding a correct trend of cell edge versus composition, whereas LS’s issues are at variance with observations. Mixing Helmholtz energy has been parametrized by the following relationship: ΔF(T,x)mixing = x × y × [U0(T) + U1(T) × (x – y) + U2(T) × (x − y)2]−T × S(x,y)config, where y = 1−x and Uj(T) are polynomials in T of the second order. ΔF(T,x)mixing exhibits a quasi-symmetric behaviour and allows one to build the T–X phase relations diagram over the MgO–FeO join. The HS model including vibrational contribution to the Helmholtz energy predicts a solid solution’s critical temperature of some 950 K, remarkably larger than olivine’s and Mg–Fe garnet’s. All this points to a more difficult Mg–Fe mixing in periclase-like structure than olivine and garnet, which, in turn, provide more structure degrees of freedom for atomic relaxation. From ΔF(T,x)mixing, we have then derived ΔH(T,x)excess and ΔS(T,x)excess. The former, characterized by a quasi-regular behaviour, has been parametrized through W × x × (1−x), obtaining WH,Mg–Fe of 17.7(5) kJ/mol. ΔS(T,x)excess, in turn, increases as a function of temperature, showing absolute figures confined within 0.1 J/mol/K. Mixing Gibbs energy, calculated combining the present issues with earlier theoretical determinations of the magnesio-wüstite’s elastic properties, has shown that the HS configuration is stable and promote Mg–Fe solid solution up to ≈15 GPa

    Electromagnetic dipole moments of charged baryons with bent crystals at the LHC

    Get PDF
    We propose a unique program of measurements of electric and magnetic dipole moments of charm, beauty and strange charged baryons at the LHC, based on the phenomenon of spin precession of channeled particles in bent crystals. Studies of crystal channeling and spin precession of positively- and negatively-charged particles are presented, along with feasibility studies and expected sensitivities for the proposed experiment using a layout based on the LHCb detector.Comment: 19 pages, 13 figure

    Fe-periclase reactivity at Earth's lower mantle conditions: Ab-initio geochemical modelling

    Get PDF
    Intrinsic and extrinsic stability of the (Mg,Fe)O solid mixture in the Fe-Mg-Si-O system at high P, T conditions relevant to the Earth\u2019s mantle is investigated by the combination of quantum mechanical calculations (Hartree- 26 Fock/DFT hybrid scheme), cluster expansion techniques and statistical thermodynamics. Iron in the (Mg,Fe)O binary mixture is assumed to be either in the low spin (LS) or in the high spin (HS) state. Un-mixing at solid state is observed only for the LS condition in the 23\u201342 GPa pressure range, whereas HS does not give rise to un-mixing. LS (Mg,Fe)O un-mixings are shown to be able to incorporate iron by subsolidus reactions with a reservoir of a virtual bridgmanite composition, for a maximum total enrichment of 0.22 FeO. At very high P (up to 130/3150 GPa/K), a predominant (0.7 phase proportion), iron-rich Fe-periclase mixture (Mg0.50Fe0.50)O is formed, and it coexists, at constrained phase composition conditions, with two iron-poor assemblages [(Mg0.90Fe0.10)O and (Mg0.825Fe0.175)O]. These theoretical results agree with the compositional variability and frequency of occurrence observed in lower mantle Fe-periclase from diamond inclusions and from HP-HT synthesis products. The density difference among the Fe-periclase phases increases up to 10%, between 24 and 130 GPa. The calculated bulk Fe/Mg partitioning coefficient between the bridgmanite reservoir and Fe-periclase, Kd, is 0.64 at 24 GPa; it then drops to 0.19 at 80 GPa, and becomes quasi-invariant (0.18\u20130.16) in the lowermost portion of the Earth\u2019s mantle (80\u2013 130 GPa). These Kd-values represent an approximate estimate for the Fe/Mg-partitioning between actual bridgmanite and Fe-periclase. Consequently, our Kd-values agree with experimental measurements and theoretical determinations, hinting that iron preferentially dissolves in periclase with respect to all the other iron-bearing phases of the lower mantle. The continuous change up to 80 GPa (2000 km depth) of the products (compositions and phase proportions) over the MgO-FeO binary causes geochemical heterogeneities throughout the lower mantle, but it does not give rise to any sharp discontinuity. In this view, anomalies like the ULVZs, explained with a local and abrupt change of density, do not seem primarily ascribable to the mixing behavior and reactivity of (Mg,Fe)O at subsolidus

    Blue toe syndrome: A challenging diagnosis

    Get PDF
    \u201cBlue toe syndrome\u201d (BTS) refers to the acute onset of purple painful digits in the absence of evident trauma, cold-associated injury or disorders that induce generalized cyanosis. The term was used for the first time in 1976 by Komody, who underlined the vascular etiology of the disease and its possible diagnostic confirmation through angiography.[1,2] Indeed, BTS may occur from end-arterial occlusion, impaired venous outflow, and/or abnormal blood circulation. Peripheral microembolism with distal arterial occlusion is one of the most frequent underlying mechanisms of the disease and consists of disrupted material from ulcerated atheromatous plaques (atheromatous or cholesterol crystal emboli). The case described by us assumes significance because of an atypical clinical presentation of a peripheral embolism from an abdominal aortic aneurysm, hence necessitating a high index of suspicion to achieve the correct diagnosis.

    Intermolecular interactions of substituted benzenes on multi-walled carbon nanotubes grafted on HPLC silica microspheres and interaction study through artificial neural networks

    Get PDF
    Purified multi-walled carbon nanotubes (MWCNTs) grafted onto silica microspheres by gamma-radiation were applied as a HPLC stationary phase for investigating the intermolecular interactions between MWCNTs and substituted benzenes. The synthetic route, simple and not requiring CNTs derivatization, involved no alteration of the nanotube original morphology and physical–chemical properties. The affinity of a set of substituted benzenes for the MWCNTs was studied by correlating the capacity factor (k′) of each probe to its physico-chemical characteristics (calculated by Density Functional Theory). The correlation was found through a theoretical approach based on feedforward neural networks. This strategy was adopted because today these calculations are easily affordable for small molecules (like the analytes), and many critical parameters needed are not known. This might increase the applicability of the proposed method to other cases of study. Moreover, it was seen that the normal linear fit does not provide a good model. The interaction on the MWCNT phase was compared to that of an octadecyl (C18) reversed phase, under the same elution conditions. Results from trained neural networks indicated that the main role in the interactions between the analytes and the stationary phases is due to dipole moment, polarizability and LUMO energy. As expected for the C18 stationary phase correlation, is due to dipole moment and polarizability, while for the MWCNT stationary phase primarily to LUMO energy followed by polarizability, evidence for a specific interaction between MWCNTs and analytes. The CNT-based hybrid material proved to be not only a chromatographic phase but also a useful tool to investigate the MWCNT-molecular interactions with variously substituted benzenes
    • …
    corecore