10 research outputs found

    Molecular and Biological Analysis of Eight Genetic Islands That Distinguish Neisseria meningitidis from the Closely Related Pathogen Neisseria gonorrhoeae

    No full text
    The pathogenic species Neisseria meningitidis and Neisseria gonorrhoeae cause dramatically different diseases despite strong relatedness at the genetic and biochemical levels. N. meningitidis can cross the blood-brain barrier to cause meningitis and has a propensity for toxic septicemia unlike N. gonorrhoeae. We previously used subtractive hybridization to identify DNA sequences which might encode functions specific to bacteremia and invasion of the meninges because they are specific to N. meningitidis and absent from N. gonorrhoeae. In this report we show that these sequences mark eight genetic islands that range in size from 1.8 to 40 kb and whose chromosomal location is constant. Five of these genetic islands were conserved within a representative set of strains and/or carried genes with homologies to known virulence factors in other species. These were deleted, and the mutants were tested for correlates of virulence in vitro and in vivo. This strategy identified one island, region 8, which is needed to induce bacteremia in an infant rat model of meningococcal infection. Region 8 encodes a putative siderophore receptor and a disulfide oxidoreductase. None of the deleted mutants was modified in its resistance to the bactericidal effect of serum. Neither were the mutant strains altered in their ability to interact with endothelial cells, suggesting that such interactions are not encoded by large genetic islands in N. meningitidis

    Prefazione

    No full text
    Lymphedema, lymphangiectasias, mental retardation and unusual facial characteristics define the autosomal recessive Hennekam syndrome. Homozygosity mapping identified a critical chromosomal region containing CCBE1, the human ortholog of a gene essential for lymphangiogenesis in zebrafish. Homozygous and compound heterozygous mutations in seven subjects paired with functional analysis in a zebrafish model identify CCBE1 as one of few genes causing primary generalized lymph-vessel dysplasia in humans

    Literaturverzeichnis

    No full text
    corecore