7,384 research outputs found
Coccolithophore fluxes in the open tropical North Atlantic: influence of thermocline depth, Amazon water, and Saharan dust
Coccolithophores are calcifying phytoplankton and major contributors to both the organic and inorganic oceanic carbon pumps. Their export fluxes, species composition, and seasonal patterns were determined in two sediment trap moorings (M4 at 12 degrees N, 49 degrees W and M2 at 14 degrees N, 37 degrees W) collecting settling particles synchronously from October 2012 to November 2013 at 1200 m of water depth in the open equatorial North Atlantic. The two trap locations showed a similar seasonal pattern in total coccolith export fluxes and a predominantly tropical coccolithophore settling assemblage. Species fluxes were dominated throughout the year by lower photic zone (LPZ) taxa (Florisphaera profunda, Gladiolithus flabellatus) but also included upper photic zone (UPZ) taxa (Umbellosphaera spp., Rhabdosphaera spp., Umbilicosphaera spp., Helicosphaera spp.). The LPZ flora was most abundant during fall 2012, whereas the UPZ flora was more important during summer. In spite of these similarities, the western part of the study area produced persistently higher fluxes, averaging 241 x 10(7) +/- 76 x 10(7) coccoliths m(-2) d(-1) at station M4 compared to only 66 x 10(7) +/- 31 x 10(7) coccoliths m(-2) d(-1) at station M2. Higher fluxes at M4 were mainly produced by the LPZ species, favoured by the westward deepening of the thermocline and nutricline. Still, most UPZ species also contributed to higher fluxes, reflecting enhanced productivity in the western equatorial North Atlantic. Such was the case of two marked flux peaks of the more opportunistic species Gephyrocapsa muellerae and Emiliania huxleyi in January and April 2013 at M4, indicating a fast response to the nutrient enrichment of the UPZ, probably by wind-forced mixing. Later, increased fluxes of G. oceanica and E. huxleyi in October-November 2013 coincided with the occurrence of Amazon-River-affected surface waters. Since the spring and fall events of 2013 were also accompanied by two dust flux peaks, we propose a scenario in which atmospheric dust also provided fertilizing nutrients to this area. Enhanced surface buoyancy associated with the river plume indicates that the Amazon acted not only as a nutrient source, but also as a surface density retainer for nutrients supplied from the atmosphere. Nevertheless, lower total coccolith fluxes during these events compared to the maxima recorded in November 2012 and July 2013 indicate that transient productivity by opportunistic species was less important than "background" tropical productivity in the equatorial North Atlantic. This study illustrates how two apparently similar sites in the tropical open ocean actually differ greatly in ecological and oceanographic terms. The results presented here provide valuable insights into the processes governing the ecological dynamics and the downward export of coccolithophores in the tropical North Atlantic.Netherlands Organization for Scientific Research (NWO) [822.01.008]; European Research Council (ERC) [311152]; University of Bremen; European Union [600411]info:eu-repo/semantics/publishedVersio
Dielectric response of electric-field distortions of the twist-bend nematic phase for LC dimers
Wide band dielectric spectroscopy of bent-shaped achiral liquid-crystal dimers 1′′-n′′-bis(4-cyanobiphenyl-4′-yl) n-alkanes (CBnCB n = 7, 9, 11) has been investigated in a frequency range 0.1 Hz–100 MHz using planar-aligned cells of sample thicknesses ranging from 2 to 10 (μm) over a temperature range that covers both nematic and twist bend nematic phases. Two peaks in the dielectric spectrum in the higher frequency range are assigned to the molecular relaxation processes. The peak at the highest frequency, ∼40 to 80 MHz, is assigned to an internal precessional rotation of a single unit of the dimer around the director. The mode in the next lower frequency range of 2–10 MHz is assigned to the spinning rotation of the dimer around its long axis. This involves fluctuations of the dipole moment of the bent-shaped conformation that is directed along its arrow direction of the bow shape formed by the dimer. The peak in the frequency range 100 kHz–1 MHz can be assigned to the collective fluctuations of the local director with reference to the helical axis of the NTB structure. The dependence of its frequency on temperature is reminiscent of the soft mode observed at the SmA∗ to SmC∗ phase transition. This result clearly corresponds to the electroclinic effect—the response of the director to the applied electric field in an electro-optic experiment. The lowest frequency mode, observed in the frequency range of 0.1 Hz–100 Hz, is identified with the Goldstone mode. This mode is concerned with the long range azimuthal angle fluctuations of the local director. This leads to an alternating compression and expansion of the periodic structure of the NTB phase
Probability of the resistive state formation caused by absorption of a single-photon in current-carrying superconducting nano-strips
We have studied supercurrent-assisted formation of the resistive state in
nano-structured Nb and NbN superconducting films after absorption of a single
photon. In amorphous narrow NbN strips the probability of the resistive state
formation has a pronounced spectral cut-off. The corresponding threshold photon
energy decreases with the bias current. Analysis of the experimental data in
the framework of the generalized hot-spot model suggests that the quantum yield
for near-infrared photons increases faster than the photon nergy. Relaxation of
the resistive state depends on the photon energy making the phenomenon feasible
for the development of energy resolving single-photon detectors.Comment: 9 pages, 9 figures, submitted to Eur. Phys. Journa
A concept of an automated function control for ambient aerosol measurements using mobility particle size spectrometers
An automated function control unit was developed to regularly check the
ambient particle number concentration derived from a mobility particle size
spectrometer as well as its zero-point behaviour. The function control allows
unattended quality assurance experiments at remote air quality monitoring or
research stations under field conditions. The automated function control also
has the advantage of being able to get a faster system stability response
than the recommended on-site comparisons with reference instruments. The
method is based on a comparison of the total particle number concentration
measured by a mobility particle size spectrometer and a condensation particle
counter while removing diffusive particles smaller than 20 nm in diameter.
In practice, the small particles are removed by a set of diffusion screens,
as traditionally used in a diffusion battery. Another feature of the
automated function control is to check the zero-point behaviour of the
ambient aerosol passing through a high-efficiency particulate air (HEPA)
filter.
<br><br>
The performance of the function control is illustrated with the aid of a
1-year data set recorded at Annaberg-Buchholz, a station in the Saxon air
quality monitoring network. During the period of concern, the total particle
number concentration derived from the mobility particle size spectrometer
slightly overestimated the particle number concentration recorded by the
condensation particle counter by 2 % (grand average). Based on our first
year of experience with the function control, we developed tolerance criteria
that allow a performance evaluation of a tested mobility particle size
spectrometer with respect to the total particle number concentration. We
conclude that the automated function control enhances the quality and
reliability of unattended long-term particle number size distribution
measurements. This will have beneficial effects for intercomparison studies
involving different measurement sites, and help provide a higher data
accuracy for cohort health and climate research studies
Increased Sensitivity to Possible Muonium to Antimuonium Conversion
A new experimental search for muonium-antimuonium conversion was conducted at
the Paul Scherrer Institute, Villigen, Switzerland. The preliminary analysis
yielded one event fulfilling all required criteria at an expected background of
1.7(2) events due to accidental coincidences. An upper limit for the conversion
probability in 0.1 T magnetic field is extracted as (90%
CL).Comment: 2 figure
Coherent Integration of 0.5 GHz Spectral Holograms at 1536 Nm Using Dynamic Biphase Codes
Spectral hole-burning-based optical processing devices are proposed for coherent integration of multiple high-bandwidth interference patterns in a spectral hole-burning medium. In this implementation, 0.5 GHz spectral holographic gratings are dynamically accumulated in Er3+:Y2SiO5 style= position: relative; tabindex= 0 id= MathJax-Element-1-Frame \u3eEr3+:Y2SiO5 at 4.2 K using a 1536 nm laser frequency stabilized to a spectral hole, along with commercial off-the-shelf components. The processed data, representing time delays over 0.5–2.0 μs, were optically read out using a frequency-swept probe; this approach makes possible the use of low-bandwidth, large-dynamic-range detectors and digitizers and enables competitive processing for applications such as radar,lidar, and radio astronomy. Coherent integration dynamics and material advances are reported
Relating particle hygroscopicity and CCN activity to chemical composition during the HCCT-2010 field campaign
Particle hygroscopic growth at 90% RH (relative humidity), cloud condensation nuclei (CCN) activity, and size-resolved chemical composition were concurrently measured in the Thüringer Wald mid-level mountain range in central Germany in the fall of 2010. The median hygroscopicity parameter values, κ, of 50, 75, 100, 150, 200, and 250 nm particles derived from hygroscopicity measurements are respectively 0.14, 0.14, 0.17, 0.21, 0.24, and 0.28 during the sampling period. The closure between HTDMA (Hygroscopicity Tandem Differential Mobility Analyzers)-measured (κHTDMA) and chemical composition-derived (κchem) hygroscopicity parameters was performed based on the Zdanovskii–Stokes–Robinson (ZSR) mixing rule. Using size-averaged chemical composition, the κ values are substantially overpredicted (30 and 40% for 150 and 100 nm particles). Introducing size-resolved chemical composition substantially improved closure. We found that the evaporation of NH4NO3, which may happen in a HTDMA system, could lead to a discrepancy in predicted and measured particle hygroscopic growth. The hygroscopic parameter of the organic fraction, κorg, is positively correlated with the O : C ratio (κorg = 0.19 × (O : C) − 0.03). Such correlation is helpful to define the κorg value in the closure study. κ derived from CCN measurement was around 30% (varied with particle diameters) higher than that determined from particle hygroscopic growth measurements (here, hydrophilic mode is considered only). This difference might be explained by the surface tension effects, solution non-ideality, gas-particle partitioning of semivolatile compounds, and the partial solubility of constituents or non-dissolved particle matter. Therefore, extrapolating from HTDMA data to properties at the point of activation should be done with great care. Finally, closure study between CCNc (cloud condensation nucleus counter)-measured (κCCN) and chemical composition (κCCN, chem) was performed using CCNc-derived κ values for individual components. The results show that the κCCN can be well predicted using particle size-resolved chemical composition and the ZSR mixing rule
- …