78 research outputs found

    Hydrogen transport in superionic system Rb3H(SeO4)2: a revised cooperative migration mechanism

    Full text link
    We performed density functional studies of electronic properties and mechanisms of hydrogen transport in Rb3H(SeO4)2 crystal which represents technologically promising class M3H(XO4)2 of proton conductors (M=Rb,Cs, NH4; X=S,Se). The electronic structure calculations show a decisive role of lattice dynamics in the process of proton migration. In the obtained revised mechanism of proton transport, the strong displacements of the vertex oxygens play a key role in the establishing the continuous hydrogen transport and in the achieving low activation energies of proton conduction which is in contrast to the standard two-stage Grotthuss mechanism of proton transport. Consequently, any realistic model description of proton transport should inevitably involve the interactions with the sublattice of the XO4 groups.Comment: 11 pages, 11 figures, to appear in Physical Review

    Hydrogen Dynamics in Superprotonic CsHSO4

    Full text link
    We present a detailed study of proton dynamics in the hydrogen-bonded superprotonic conductor CsHSO4 from first-principles molecular dynamics simulations, isolating the subtle interplay between the dynamics of the O--H chemical bonds, the O...H hydrogen bonds, and the SO4 tetrahedra in promoting proton diffusion. We find that the Grotthus mechanism of proton transport is primarily responsible for the dynamics of the chemical bonds, whereas the reorganization of the hydrogen-bond network is dominated by rapid angular hops in concert with small reorientations of the SO4 tetrahedra. Frequent proton jumping across the O--H...O complex is countered by a high rate of jump reversal, which we show is connected to the dynamics of the SO4 tetrahedra, resulting in a diminished CsHSO4/CsDSO4 isotope effect. We also find evidence of multiple timescales for SO4 reorientation events, leading to distinct diffusion mechanisms along the different crystal lattice directions. Finally, we employ graph-theoretic techniques to characterize the topology of the hydrogen-bond network and demonstrate a clear relationship between certain connectivity configurations and the likelihood for diffusive jump events.Comment: 12 pages, 10 figure

    Using Photoelectron Spectroscopy and Quantum Mechanics to Determine d-Band Energies of Metals for Catalytic Applications

    Full text link

    Raman Scattering Study of Cs 3

    No full text
    • …
    corecore