109 research outputs found

    Activity of two antimicrobial peptides against Enterococcus faecalis in a model of biofilm-mediated endodontic infection

    Get PDF
    Enterococcus faecalis is a common cause of biofilm-associated opportunistic infections, which are often difficult to treat. The formation of E. faecalis biofilms on the dentinal walls of the root canal is frequently the cause of endodontic treatment failure and secondary apical periodontitis. In a preliminary work, two recognized antifungal peptides, KP and L18R, showed antibacterial activity against planktonic E. faecalis cells at micromolar concentrations. Moreover, L18R proved to reduce the biomass in the early stage of E. faecalis biofilm development on polystyrene plates, while a qualitative biofilm inhibition was demonstrated on hydroxyapatite disks by confocal laser scanning microscopy (CLSM). The aim of this study was to better characterize the effect of both peptides on E. faecalis biofilm. A reduction in metabolic activity after peptide treatment was detected by Al-amar Blue assay, while a remarkable impairment in the architecture of E. faecalis biofilms on hy-droxyapatite disks, along with a significant reduction in viable bacteria, was caused mostly by L18R, as assessed by CLSM and scanning electron microscopy. The lack of cytotoxicity of the investigated peptides against L929 murine fibroblasts was also determined. Obtained results suggest L18R as a promising candidate for the development of new strategies for endodontic infection control

    Antibacterial effects of two synthetic peptides against Enterococcus faecalis biofilms: A preliminary in vitro study

    Get PDF
    Aim: Current endodontic techniques are unable to fully eradicate intracanal bacteria. Thus, new agents that effectively eliminate endodontic pathogens are needed. The aim of this study was to assess the antibacterial properties of two synthetic peptides, namely KP and L18R, against planktonic cells and biofilms of the endodontic pathogen Enterococcus faecalis. Methodology: KP and L18R bactericidal activity against E. faecalis ATCC 29212 was evaluated by colony forming unit assays and the half maximal effective concentration (EC50) was calculated. The effect of peptides on E. faecalis biofilm formation onto polystyrene plates was also assessed by the crystal violet assay. Confocal laser scanning microscopy (CLSM) analysis was carried out to compare the effects of KP, L18R and a Ca(OH)2 saturated solution in an in vitro model of dental infection consisting in 2-day-old E. faecalis biofilms grown on hydroxyapatite disks. Results: Both KP and L18R showed strong bactericidal activity against planktonic E. faecalis. L18R proved to be 10-folds more ef fective than KP (KP and L18R EC50 values=4.520×10-6 M and 3.624×10-7 M, respectively). Peptides inhibited E. faecalis biofilm formation in a dose-dependent manner and L18R resulted more effectivethan KP. CLSM images showed that Ca(OH)2, KP and L18R remarkably impaired E. faecal is biof i lms pre -grown on hydroxyapatite. Conclusions: KP and L18R effectively inhibited E. faecalis, both in planktonic and biofilm form. L18R demonstrated a more potent antibacterial activity than KP. These preliminary results suggest that antimicrobial peptides may represent a promising new strategy for endodontic infection control

    The relation between the incidence of hypernatremia and mortality in patients with severe traumatic brain injury

    Get PDF
    INTRODUCTION: The study was aimed at verifying whether the occurrence of hypernatremia during the intensive care unit (ICU) stay increases the risk of death in patients with severe traumatic brain injury (TBI). We performed a retrospective study on a prospectively collected database including all patients consecutively admitted over a 3-year period with a diagnosis of TBI (post-resuscitation Glasgow Coma Score < or = 8) to a general/neurotrauma ICU of a university hospital, providing critical care services in a catchment area of about 1,200,000 inhabitants. METHODS: Demographic, clinical, and ICU laboratory data were prospectively collected; serum sodium was assessed an average of three times per day. Hypernatremia was defined as two daily values of serum sodium above 145 mmol/l. The major outcome was death in the ICU after 14 days. Cox proportional-hazards regression models were used, with time-dependent variates designed to reflect exposure over time during the ICU stay: hypernatremia, desmopressin acetate (DDAVP) administration as a surrogate marker for the presence of central diabetes insipidus, and urinary output. The same models were adjusted for potential confounding factors. RESULTS: We included in the study 130 TBI patients (mean age 52 years (standard deviation 23); males 74%; median Glasgow Coma Score 3 (range 3 to 8); mean Simplified Acute Physiology Score II 50 (standard deviation 15)); all were mechanically ventilated; 35 (26.9%) died within 14 days after ICU admission. Hypernatremia was detected in 51.5% of the patients and in 15.9% of the 1,103 patient-day ICU follow-up. In most instances hypernatremia was mild (mean 150 mmol/l, interquartile range 148 to 152). The occurrence of hypernatremia was highest (P = 0.003) in patients with suspected central diabetes insipidus (25/130, 19.2%), a condition that was associated with increased severity of brain injury and ICU mortality. After adjustment for the baseline risk, the incidence of hypernatremia over the course of the ICU stay was significantly related with increased mortality (hazard ratio 3.00 (95% confidence interval: 1.34 to 6.51; P = 0.003)). However, DDAVP use modified this relation (P = 0.06), hypernatremia providing no additional prognostic information in the instances of suspected central diabetes insipidus. CONCLUSIONS: Mild hypernatremia is associated with an increased risk of death in patients with severe TBI. In a proportion of the patients the association between hypernatremia and death is accounted for by the presence of central diabetes insipidus

    Alpha glucocorticoid receptor expression in different experimental rat models of acute lung injury

    Get PDF
    Background and objectives: Acute respiratory distress syndrome (ARDS) is a frequent form of hypoxiemic respiratory failure caused by the acute development of diffuse lung inflammation. Dysregulated systemic inflammation with persistent elevation of circulating inflammatory cytokines is the pathogenetic mechanism for pulmonary and extrapulmonary organ dysfunction in patients with ARDS. Glucocorticoids (GCs) have a broad range of inhibitory inflammatory effects, including inhibition of cytokines transcription, cellular activation and growth factor production. They inhibit the inflammatory pathways through two specific intracellular glucocorticoid receptors (GRs), named GRα and GRβ. The aim of our study was to evaluate the histologic evidence of inflammatory injury and the GRα uptake of resident and inflammatory cells in different experimental models of acute lung injury (ALI). Methods: We studied four groups of rats: three different experimental rat models of lung injury and a control group. The ALI was caused by barotrauma (due to an overventilation), oleic acid injection and mechanical ventilation. Results were compared to nonventilated rat control group. The duration of mechanical ventilation was of 2.5 h. At the end of each experiment, rats were sacrificed. Lung biopsies were evaluated for morphologic changes. The immunohistochemistry was performed to study GRα expression. Results: Histologic evidence of lung injury (alveolar and interstitial edema, vascular congestion, alveolar haemorrhage, emphysema, number of interstitial cells and neutrophils, and destruction of alveolar attachments) were present in all ventilated groups. Barotrauma lead to an additional inflammatory response. GRα expression significantly increased in the three ventilated groups compared with nonventilated groups. GRα expression was highest in barotrauma group. Conclusions: These data indicate that ALI is associated with diffuse alveolar damage, up-regulation of the inflammatory response and GRα overexpression. Barotrauma is the most effective mechanism inducing acute lung inflammation and GRα overexpression. © 2007 Elsevier Ltd. All rights reserved

    Surgical resection of a giant peripheral ossifying fibroma in mouth floor managed with fiberscopic intubation

    Get PDF
    Tracheal intubation for general anesthesia can sometimes be difficult in patients with a large mass in the mouth floor. Preoperative evaluation of the patient's airway is most important when treating large oral disease
    • …
    corecore