6,585 research outputs found

    Propagation of sound through the Earth's atmosphere

    Get PDF
    The data collected at a pressure of one atmosphere for the different temperatures and relative humidities of the air-water vapor mixtures is summarized. The dew point hygrometer used in these measurements did not give reliable results for dew points much above the ambient room temperature. For this reason measurements were not attempted at the higher temperatures and humidities. Viscous wall losses in the resonant tube at 0 C so dominate the molecular relaxation of nitrogen, in the air-water vapor mixture, that reliable data could not be obtained using the free decay method in a resonant tube at one atmosphere. In an effort to obtain viable data at these temperatures, measurements were performed at a pressure of 10 atmospheres. Since the molecular relaxation peak is proportional to the pressure and the viscous losses are proportional to the inverse square root of the pressure the peak height should be measurable at the higher pressure. The tradeoff here is that at 10 atmospheres; the highest relative humidity attainable is 10 percent. The data collected at 10 atmospheres is also summarized

    A mirror transport mechanism for use at cryogenic temperatures

    Get PDF
    The Mirror Transport Mechanism (MTM), which supports a pair of dihedral mirrors and moves them in a very smooth and uniform scanning motion normal to a beamsplitter is described. Each scan is followed by a quick flyback and repeat. Material selection, design, and testing of all major components of the MTM are discussed. Flex pivot failures during vibration testing, excessive dihedral platform sag under one g operation, electronic and fiber optic characteristics, and tolerancing considerations are covered. Development of the mechanism has reached the final phase of thermal and vibration qualification. Environmental testing of the complete FIRAS experiment is just beginning

    Propagation of sound through the Earth's atmosphere. 1: Measurement of sound absorption in the air: 2: Measurement of ground impedance

    Get PDF
    Parts were fabricated for the acoustic ground impedance meter and the instrument was tested. A rubber hose was used to connect the resonator neck to the chamber in order to suppress vibration from the volume velocity source which caused chatter. An analog to digital converter was successfully hardwired to the computer detection system. The cooling system for the resonant tube was modified to use liquid nitrogen cooling. This produced the required temperature for the tube, but the temperature gradients within each of the four tube sections reached unacceptable levels. Final measurements of the deexcitation of nitrogen by water vapor indicate that the responsible physical process is not the direct vibration-translation energy transfer, but is a vibration-vibration energy transfer

    Investigation of a high speed data handling system for use with multispectral aircraft scanners

    Get PDF
    A buffer memory data handling technique for use with multispectral aircraft scanners is presented which allows digital data generated at high data rates to be recorded on magnetic tape. A digital memory is used to temporarily store the data for subsequent recording at slower rates during the passive time of the scan line, thereby increasing the maximum data rate recording capability over real-time recording. Three possible implementations are described and the maximum data rate capability is defined in terms of the speed capability of the key hardware components. The maximum data rates can be used to define the maximum ground resolution achievable by a multispectral aircraft scanner using conventional data handling techniques

    The contribution of molecular relaxation in nitrogen to the absorption of sound in the atmosphere

    Get PDF
    Results and statistical analysis are presented for sound absorption in N2-H2O binary mixtures at room temperature. Experimental procedure, temperature effects, and preliminary results are presented for sound absorption in N2-H2O binary mixtures at elevated temperatures

    The diurnal nature of future extreme precipitation intensification

    Get PDF
    Short‐duration, high‐impact precipitation events in the extratropics are invariably convective in nature, typically occur during the summer, and are projected to intensify under climate change. The occurrence of convective precipitation is strongly regulated by the diurnal convective cycle, peaking in the late afternoon. Here we perform very high resolution (convection‐permitting) regional climate model simulations to study the scaling of extreme precipitation under climate change across the diurnal cycle. We show that the future intensification of extreme precipitation has a strong diurnal signal and that intraday scaling far in excess of overall scaling, and indeed thermodynamic expectations, is possible. We additionally show that, under a strong climate change scenario, the probability maximum for the occurrence of heavy to extreme precipitation may shift from late afternoon to the overnight/morning period. We further identify the thermodynamic and dynamic mechanisms which modify future extreme environments, explaining both the future scaling's diurnal signal and departure from thermodynamic expectations

    The role of the microprocessor in onboard image processing for the information adaptive system

    Get PDF
    The preliminary design of the Information Adaptive System is presented. The role of the microprocessor in the implementation of the individual processing elements is discussed. Particular emphasis is placed on multispectral image data processing

    A design approach to real-time formatting of high speed multispectral image data

    Get PDF
    A design approach to formatting multispectral image data in real time at very high data rates is presented for future onboard processing applications. The approach employs a microprocessor-based alternating buffer memory configuration whose formatting function is completely programmable. Data are read from an output buffer in the desired format by applying the proper sequence of addresses to the buffer via a lookup table memory. Sensor data can be processed using this approach at rates limited by the buffer memory access time and the buffer switching process delay time. This design offers flexible high speed data processing and benefits from continuing increases in the performance of digital memories

    Propagation of sound through the Earth's atmosphere

    Get PDF
    The infrasonic signatures generated by the main blade slap rate of a helicoper were used in an effort to detect infrasound generated by clear air turbulence. The artificially produced infrasound and the response of the data acquisition system used are analyzed. Flight procedures used by the pilot are described and the helicopter flight information is tabulated. Graphs show the relative frequency amplitudes obtained at various microphone locations
    corecore