5,584 research outputs found

    Wave Profile for Anti-force Waves with Maximum Possible Currents

    Get PDF
    In the theoretical investigation of the electrical breakdown of a gas, we apply a one-dimensional, steady state, constant velocity, three component fluid model and consider the electrons to be the main element in propagation of the wave. The electron gas temperature, and therefore the electron gas partial pressure, is considered to be large enough to provide the driving force. The wave is considered to have a shock front, followed by a thin dynamical transition region. Our set of electron fluid-dynamical equations consists of the equations of conservation of mass, momentum, and energy, plus the Poisson\u27s equation. The set of equations is referred to as the electron fluid dynamical equations; and a successful solution therefor must meet a set of acceptable physical conditions at the trailing edge of the wave. For breakdown waves with a significant current behind the shock front, modifications must be made to the set of electron fluid dynamical equations, as well as the shock condition on electron temperature. Considering existence of current behind the shock front, we have derived the shock condition on electron temperature, and for a set of experimentally measured wave speeds, we have been able to find maximum current values for which solutions to our set of electron velocity, electron temperature, and electron number density within the dynamical transition region of the wave

    HabEx polarization ray trace and aberration analysis

    Get PDF
    The flux difference between a terrestrial exoplanet and a much brighter nearby star creates an enormous optical design challenge for space-based imaging systems. Coronagraphs are designed to block the star’s flux and obtain a high-dynamic-range image of the exoplanet. The contrast of an optical system is calculated using the point spread function (PSF). Contrast quantifies starlight suppression of an imaging system at a given separation of the two objects. Contrast requirements can be as small as 10^(−10) for earth-like planets. This work reports an analysis of the September 2017 Habitable Exoplanet Imaging Mission (HabEx) end-to-end optical system prescription for geometric and polarization aberrations across the 450 to 550 nm channel. The Lyot coronagraph was modeled with a vector vortex charge 6 mask but without adaptive optics (AO) to correct the phase of the Jones pupil. The detector plane irradiance was calculated for three states of the telescope/coronagraph system: (1) free of geometric and polarization aberrations; (2) isotropic mirror coatings throughout the end-toend system; and (3) isotropic mirrors with form birefringence on the primary mirror. For each of these three states the system response both with and without a coronagraph mask was calculated. Two merit functions were defined to quantify the system’s ability to attenuate starlight: (1) normalized polychromatic irradiance (NPI), and (2) starlight suppression factor (SSF). Both of these are dimensionless and their values are functions of position across the focal plane. The NPI is defined as the irradiance point-by-point across the detector plane with a coronagraph mask divided by the value of the on-axis irradiance without a coronagraph mask. The SSF is the irradiance point-by-point across the detector plane with a coronagraph mask divided by the pointby-point value of the irradiance across the detector plane without a coronagraph mask. Both the NPI and the SSF provide insights into coronagraph performance. Deviations from the aberration-free case are calculated and summarized in table 2. The conclusions are: (1) the HabEx optical system is well-balanced for both geometric and polarization aberrations; (2) the spatially dependent polarization reflectivity for the HabEx primary mirror should be specified to ensure the coating is isotropic; (3) AO to correct the two orthogonal polarization-dependent wavefront errors is essential

    Design considerations for Surveyor guidance

    Get PDF
    Design considerations for midcourse guidance and terminal descent system of Surveyor lunar soft landing spacecraf

    EphA4 expression promotes network activity and spine maturation in cortical neuronal cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neurons form specific connections with targets via synapses and patterns of synaptic connectivity dictate neural function. During development, intrinsic neuronal specification and environmental factors guide both initial formation of synapses and strength of resulting connections. Once synapses form, non-evoked, spontaneous activity serves to modulate connections, strengthening some and eliminating others. Molecules that mediate intercellular communication are particularly important in synaptic refinement. Here, we characterize the influences of EphA4, a transmembrane signaling molecule, on neural connectivity.</p> <p>Results</p> <p>Using multi-electrode array analysis on <it>in vitro </it>cultures, we confirmed that cortical neurons mature and generate spontaneous circuit activity as cells differentiate, with activity growing both stronger and more patterned over time. When EphA4 was over-expressed in a subset of neurons in these cultures, network activity was enhanced: bursts were longer and were composed of more spikes than in control-transfected cultures. To characterize the cellular basis of this effect, dendritic spines, the major excitatory input site on neurons, were examined on transfected neurons <it>in vitro</it>. Strikingly, while spine number and density were similar between conditions, cortical neurons with elevated levels of EphA4 had significantly more mature spines, fewer immature spines, and elevated colocalization with a mature synaptic marker.</p> <p>Conclusions</p> <p>These results demonstrate that experimental elevation of EphA4 promotes network activity <it>in vitro</it>, supporting spine maturation, producing more functional synaptic pairings, and promoting more active circuitry.</p

    White matter changes and word finding failures with increasing age.

    Get PDF
    BACKGROUND: Increasing life expectancy necessitates the better understanding of the neurophysiological underpinnings of age-related cognitive changes. The majority of research examining structural-cognitive relationships in aging focuses on the role of age-related changes to grey matter integrity. In the current study, we examined the relationship between age-related changes in white matter and language production. More specifically, we concentrated on word-finding failures, which increase with age. METHODOLOGY/PRINCIPAL FINDINGS: We used Diffusion tensor MRI (a technique used to image, in vivo, the diffusion of water molecules in brain tissue) to relate white matter integrity to measures of successful and unsuccessful picture naming. Diffusion tensor images were used to calculate Fractional Anisotropy (FA) images. FA is considered to be a measure of white matter organization/integrity. FA images were related to measures of successful picture naming and to word finding failures using voxel-based linear regression analyses. Successful naming rates correlated positively with white matter integrity across a broad range of regions implicated in language production. However, word finding failure rates correlated negatively with a more restricted region in the posterior aspect of superior longitudinal fasciculus. CONCLUSIONS/SIGNIFICANCE: The use of DTI-MRI provides evidence for the relationship between age-related white matter changes in specific language regions and word finding failures in old age
    corecore