148 research outputs found
Lattice dynamics reveals a local symmetry breaking in the emergent dipole phase of PbTe
Local symmetry breaking in complex materials is emerging as an important
contributor to materials properties but is inherently difficult to study. Here
we follow up an earlier structural observation of such a local symmetry broken
phase in the technologically important compound PbTe with a study of the
lattice dynamics using inelastic neutron scattering (INS). We show that the
lattice dynamics are responsive to the local symmetry broken phase, giving key
insights in the behavior of PbTe, but also revealing INS as a powerful tool for
studying local structure. The new result is the observation of the unexpected
appearance on warming of a new zone center phonon branch in PbTe. In a harmonic
solid the number of phonon branches is strictly determined by the contents and
symmetry of the unit cell. The appearance of the new mode indicates a crossover
to a dynamic lower symmetry structure with increasing temperature. No
structural transition is seen crystallographically but the appearance of the
new mode in inelastic neutron scattering coincides with the observation of
local Pb off-centering dipoles observed in the local structure. The observation
resembles relaxor ferroelectricity but since there are no inhomogeneous dopants
in pure PbTe this anomalous behavior is an intrinsic response of the system. We
call such an appearance of dipoles out of a non-dipolar ground-state
"emphanisis" meaning the appearance out of nothing. It cannot be explained
within the framework of conventional phase transition theories such as
soft-mode theory and challenges our basic understanding of the physics of
materials
Tuning Ionic and Electronic Conductivities in the "Hollow" Perovskite { en}MAPbI<sub>3</sub>
The recently developed family of 3D halide perovskites with general formula (A)1-x(en)x(M)1-0.7x(I)3-0.4x (A = MA, FA; M = Pb2+, Sn2+ en = ethylenediammonium), often referred to as "hollow"perovskites, exhibits exceptional air stability and crystallizes in the high symmetry α phase at room temperature. These properties are counterintuitive, considering that these structures include the large divalent en cation charge-compensated by vacancies of Pb cations and I anions. Moreover, the understanding of their transport behavior is incomplete. To provide new insights into the ionic and electronic transport properties of these "hollow"perovskites, we performed DC polarization experiments and ab initio calculations on the {en}MAPbI3 material. We observe large variations of ionic and electronic conductivities with en concentration, which can be explained by charge and site arguments in conjunction with trapping effects. The latter is reflected by the increase of the activation energies for iodide ion transport with higher en content that we observe from both experimental and computational results. The connection between these transport phenomena and the stability of "hollow"perovskite materials and devices is discussed. </p
- …