50 research outputs found

    Gamma-Ray Pulsars

    Get PDF
    Gamma-ray photons from young pulsars allow the deepest insight into the properties and interactions of high-energy particles with magnetic and photon fields in a pulsar magnetosphere. Measurements with the Compton Gamma-Ray Observatory have led to the detection of nearly ten gamma-ray pulsars. Although quite a variety of individual signatures is found for these pulsars, some general characteristics can be summarized: (1) the gamma-ray lightcurves of most high-energy pulsars show two major peaks with the pulsed emission covering more than 50% of the rotation, i.e. a wide beam of emission; (2) the gamma-ray spectra of pulsars are hard (power law index less than 2), often with a luminosity maximum around 1 GeV. A spectral cutoff above several GeV is found; (3) the spectra vary with rotational phase indicating different sites of emission; and (4) the gamma-luminosity scales with the particle flux from the open regions of the magnetosphere (Goldreich-Julian current).Comment: 9 pages, 9 figures, 2 tables. To appear in the Proceedings of the 270. WE-Heraeus Seminar on Neutron Stars, Pulsars and Supernova Remnants, Jan. 21-25, 2002, Physikzentrum Bad Honnef, eds W. Becker, H. Lesch & J. Truemper. Proceedings are available as MPE-Report 27

    Redundant Notch1 and Notch2 Signaling Is Necessary for IFNγ Secretion by T Helper 1 Cells During Infection with Leishmania major

    Get PDF
    The protective immune response to intracellular parasites involves in most cases the differentiation of IFNγ-secreting CD4+ T helper (Th) 1 cells. Notch receptors regulate cell differentiation during development but their implication in the polarization of peripheral CD4+ T helper 1 cells is not well understood. Of the four Notch receptors, only Notch1 (N1) and Notch2 (N2) are expressed on activated CD4+ T cells. To investigate the role of Notch in Th1 cell differentiation following parasite infection, mice with T cell-specific gene ablation of N1, N2 or both (N1N2ΔCD4Cre) were infected with the protozoan parasite Leishmania major. N1N2ΔCD4Cre mice, on the C57BL/6 L. major-resistant genetic background, developed unhealing lesions and uncontrolled parasitemia. Susceptibility correlated with impaired secretion of IFNγ by draining lymph node CD4+ T cells and increased secretion of the IL-5 and IL-13 Th2 cytokines. Mice with single inactivation of N1 or N2 in their T cells were resistant to infection and developed a protective Th1 immune response, showing that CD4+ T cell expression of N1 or N2 is redundant in driving Th1 differentiation. Furthermore, we show that Notch signaling is required for the secretion of IFNγ by Th1 cells. This effect is independent of CSL/RBP-Jκ, the major effector of Notch receptors, since L. major-infected mice with a RBP-Jκ deletion in their T cells were able to develop IFNγ-secreting Th1 cells, kill parasites and heal their lesions. Collectively, we demonstrate here a crucial role for RBP-Jκ-independent Notch signaling in the differentiation of a functional Th1 immune response following L. major infection

    SOSORT consensus paper: school screening for scoliosis. Where are we today?

    Get PDF
    This report is the SOSORT Consensus Paper on School Screening for Scoliosis discussed at the 4th International Conference on Conservative Management of Spinal Deformities, presented by SOSORT, on May 2007. The objectives were numerous, 1) the inclusion of the existing information on the issue, 2) the analysis and discussion of the responses by the meeting attendees to the twenty six questions of the questionnaire, 3) the impact of screening on frequency of surgical treatment and of its discontinuation, 4) the reasons why these programs must be continued, 5) the evolving aim of School Screening for Scoliosis and 6) recommendations for improvement of the procedure
    corecore