4,472 research outputs found
Superconducting properties of very high quality NbN thin films grown by high temperature chemical vapor deposition
Niobium nitride (NbN) is widely used in high-frequency superconducting
electronics circuits because it has one of the highest superconducting
transition temperatures ( 16.5 K) and largest gap among
conventional superconductors. In its thin-film form, the of NbN is very
sensitive to growth conditions and it still remains a challenge to grow NbN
thin film (below 50 nm) with high . Here, we report on the superconducting
properties of NbN thin films grown by high-temperature chemical vapor
deposition (HTCVD). Transport measurements reveal significantly lower disorder
than previously reported, characterized by a Ioffe-Regel ()
parameter of 14. Accordingly we observe 17.06 K (point of
50% of normal state resistance), the highest value reported so far for films of
thickness below 50 nm, indicating that HTCVD could be particularly useful for
growing high quality NbN thin films
On the Brightness and Waiting-time Distributions of a Type III Radio Storm observed by STEREO/WAVES
Type III solar radio storms, observed at frequencies below approximately 16
MHz by space borne radio experiments, correspond to the quasi-continuous,
bursty emission of electron beams onto open field lines above active regions.
The mechanisms by which a storm can persist in some cases for more than a solar
rotation whilst exhibiting considerable radio activity are poorly understood.
To address this issue, the statistical properties of a type III storm observed
by the STEREO/WAVES radio experiment are presented, examining both the
brightness distribution and (for the first time) the waiting-time distribution.
Single power law behavior is observed in the number distribution as a function
of brightness; the power law index is approximately 2.1 and is largely
independent of frequency. The waiting-time distribution is found to be
consistent with a piecewise-constant Poisson process. This indicates that
during the storm individual type III bursts occur independently and suggests
that the storm dynamics are consistent with avalanche type behavior in the
underlying active region.Comment: 14 pages, 4 figures, 1 table. Accepted for publication in
Astrophysical Journal Letter
Advancement in the understanding of multifragmentation and phase transition for hot nuclei
Recent advancement on the knowledge of multifragmentation and phase
transition for hot nuclei is reported. It concerns i) the influence of radial
collective energy on fragment partitions and the derivation of general
properties of partitions in presence of such a collective energy, ii) a better
knowledge of freeze-out properties obtained by means of a simulation based on
all the available experimental information and iii) the quantitative study of
the bimodal behaviour of the heaviest fragment charge distribution for
fragmenting hot heavy quasi-projectiles which allows, for the first time, to
estimate the latent heat of the phase transition.Comment: 9 pages, Proceedings of IWM09, November 4-7, Catania (Italy
The effects of room design on computer-supported collaborative learning in a multi-touch classroom.
While research indicates that technology can be useful for supporting learning and collaboration, there is still relatively little uptake or widespread implementation of these technologies in classrooms. In this paper, we explore one aspect of the development of a multi-touch classroom, looking at two different designs of the classroom environment to explore how classroom layout may influence group interaction and learning. Three classes of students working in groups of four were taught in the traditional forward-facing room condition, while three classes worked in a centered room condition. Our results indicate that while the outcomes on tasks were similar across conditions, groups engaged in more talk (but not more off-task talk) in a centered room layout, than in a traditional forward-facing room. These results suggest that the use of technology in the classroom may be influenced by the location of the technology, both in terms of the learning outcomes and the interaction behaviors of students. The findings highlight the importance of considering the learning environment when designing technology to support learning, and ensuring that integration of technology into formal learning environments is done with attention to how the technology may disrupt, or contribute to, the classroom interaction practices
Long-term potentiation in neurogliaform interneurons modulates excitation-inhibition balance in the temporoammonic pathway
Apical dendrites of pyramidal neurons integrate information from higher-order cortex and thalamus, and gate signalling and plasticity at proximal synapses. In the hippocampus, neurogliaform cells and other interneurons located within stratum lacunosum-moleculare mediate powerful inhibition of CA1 pyramidal neuron distal dendrites. Is the recruitment of such inhibition itself subject to use-dependent plasticity, and if so, what induction rules apply? Here we show that interneurons in mouse stratum lacunosum-moleculare exhibit Hebbian NMDA receptor-dependent long-term potentiation (LTP). Such plasticity can be induced by selective optogenetic stimulation of afferents in the temporoammonic pathway from the entorhinal cortex, but not by equivalent stimulation of afferents from the thalamic nucleus reuniens. We further show that theta-burst patterns of afferent firing induces LTP in neurogliaform interneurons identified using neuron-derived neurotrophic factor (Ndnf)-Cre mice. Theta-burst activity of entorhinal cortex afferents led to an increase in disynaptic feed-forward inhibition, but not monosynaptic excitation, of CA1 pyramidal neurons. Activity-dependent synaptic plasticity in stratum lacunosum-moleculare interneurons thus alters the excitation-inhibition balance at entorhinal cortex inputs to the apical dendrites of pyramidal neurons, implying a dynamic role for these interneurons in gating CA1 dendritic computations.
Abstract figure legend Hebbian LTP of excitatory transmission onto interneurons located within hippocampal stratum lacunosum moleculare (SLM) can be induced by electrical stimulation protocols involving pairing of pre-and post-synaptic activity. Using Ndnf-Cre mice, we show that hippocampal neurogliaform (NGF) cells express this form of LTP. These cells receive glutamatergic afferents from both the nucleus reuniens of the thalamus and the entorhinal cortex (EC), but selective optogenetic activation of either set of fibers reveals LTP at EC inputs only. Using an optogenetic theta-burst stimulation (OptoTBS) protocol to stimulate EC fibers in a physiologically relevant way, we show that NGF interneuron LTP translates to an increase in disynaptic inhibition onto CA1 pyramidal cell distal dendrites. Monosynaptic EC-CA1 pyramidal cell inputs do not undergo equivalent potentiation, leading to a net decrease in the excitation/inhibition (E/I) ratio of this pathway
Contribution of the Residual Body in the Spatial Organization of Toxoplasma gondii Tachyzoites within the Parasitophorous Vacuole
Toxoplasma gondii proliferates and organizes within a parasitophorous vacuole in rosettes around a residual body and is surrounded by a membranous nanotubular network whose function remains unclear. Here, we characterized structure and function of the residual body in intracellular tachyzoites of the RH strain. Our data showed the residual body as a body limited by a membrane formed during proliferation of tachyzoites probably through the secretion of components and a pinching event of the membrane at the posterior end. It contributes in the intravacuolar parasite organization by the membrane connection between the tachyzoites posterior end and the residual body membrane to give place to the rosette conformation. Radial distribution of parasites in rosettes favors an efficient exteriorization. Absence of the network and presence of atypical residual bodies in a ÎGRA2-HXGPRT knock-out mutant affected the intravacuolar organization of tachyzoites and their exteriorization
Measurement of the electron electric dipole moment using GdIG
A new method for the detection of the electron edm using a solid is
described. The method involves the measurement of a voltage induced across the
solid by the alignment of the samples magnetic dipoles in an applied magnetic
field, H. A first application of the method to GdIG has resulted in a limit on
the electron edm of 5E-24 e-cm, which is a factor of 40 below the limit
obtained from the only previous solid-state edm experiment. The result is
limited by the imperfect discrimination of an unexpectedly large voltage that
is even upon the reversal of the sample magnetization.Comment: 10 pages, 5 figures, v2:references corrected, submitted to PRL,
v3:added labels to figure
Combining visibilities from the Giant Meterwave Radio Telescope and the Nancay Radio Heliograph: High dynamic range snapshot images of the solar corona at 327 MHz
We report first results from an ongoing program of combining visibilities
from the Giant Meterwave Radio Telescope (GMRT) and the Nancay Radio Heliograph
(NRH) to produce composite snapshot images of the sun at meter wavelengths. We
describe the data processing, including a specific multi-scale CLEAN algorithm.
We present results of a) simulations for two models of the sun at 327 MHz, with
differing complexity b) observations of a complex noise storm on the sun at 327
MHz on Aug 27 2002. Our results illustrate the capacity of this method to
produce high dynamic range snapshot images when the solar corona has structures
with scales ranging from the image resolution of 49" to the size of the whole
sun.
We find that we cannot obtain reliable snapshot images for complex objects
when the visibilities are sparsely sampled.Comment: Accepted for publication in Astronomy & Astrophysics. Version with
high resolution figures available from
ftp://ftp.iucaa.ernet.in/in.coming/gmrtnr
- âŠ