2 research outputs found

    The pandemic brain: Neuroinflammation in non-infected individuals during the COVID-19 pandemic

    Get PDF
    While COVID-19 research has seen an explosion in the literature, the impact of pandemic-related societal and lifestyle disruptions on brain health among the uninfected remains underexplored. However, a global increase in the prevalence of fatigue, brain fog, depression and other “sickness behavior”-like symptoms implicates a possible dysregulation in neuroimmune mechanisms even among those never infected by the virus. We compared fifty-seven ‘Pre-Pandemic’ and fifteen ‘Pandemic’ datasets from individuals originally enrolled as control subjects for various completed, or ongoing, research studies available in our records, with a confirmed negative test for SARS-CoV-2 antibodies. We used a combination of multimodal molecular brain imaging (simultaneous positron emission tomography / magnetic resonance spectroscopy), behavioral measurements, imaging transcriptomics and serum testing to uncover links between pandemic-related stressors and neuroinflammation. Healthy individuals examined after the enforcement of 2020 lockdown/stay-at-home measures demonstrated elevated brain levels of two independent neuroinflammatory markers (the 18 kDa translocator protein, TSPO, and myoinositol) compared to pre-lockdown subjects. The serum levels of two inflammatory markers (interleukin-16 and monocyte chemoattractant protein-1) were also elevated, although these effects did not reach statistical significance after correcting for multiple comparisons. Subjects endorsing higher symptom burden showed higher TSPO signal in the hippocampus (mood alteration, mental fatigue), intraparietal sulcus and precuneus (physical fatigue), compared to those reporting little/no symptoms. Post-lockdown TSPO signal changes were spatially aligned with the constitutive expression of several genes involved in immune/neuroimmune functions. This work implicates neuroimmune activation as a possible mechanism underlying the non-virally-mediated symptoms experienced by many during the COVID-19 pandemic. Future studies will be needed to corroborate and further interpret these preliminary findings

    Complex spatial and temporally defined myelin and axonal degeneration in Huntington disease

    No full text
    Although much prior work has focused on the basal ganglia and cortical pathology that defines Huntington's disease (HD), recent studies have also begun to characterize cerebral white matter damage (Rosas et al., 2006; Dumas et al., 2012; Poudel et al., 2014). In this study, we investigated differences in the large fascicular bundles of the cerebral white matter of gene-positive HD carriers, including pre-manifest individuals and early symptomatic patients, using recently developed diffusion tractography procedures. We examined eighteen major fiber bundles in 37 patients with early HD (average age 55.2 ± 11.5, 14 male, 23 female), 31 gene-positive, motor negative pre-symptomatic HD (PHD) (average age 48.1 ± 11.5, 13 male, 18 female), and 38 healthy age-matched controls (average age 55.7 ± 8.6, 14 male, 24 female), using the TRActs Constrained by UnderLying Anatomy (TRACULA) procedure available as part of the FreeSurfer image processing software package. We calculated the mean fractional anisotropy (FA) and the mean radial (RD) and axial diffusivities (AD) for each fiber bundle. We also evaluated the relationships between diffusion measures, cognition and regional cortical thinning. We found that early changes in RD of select tracts in PHD subjects were associated with impaired performance on neuropsychological tests, suggesting that early changes in myelin might underlie early cognitive dysfunction. Finally, we found that increases in AD of select tracts were associated with regionally select cortical thinning of areas known to atrophy in HD, including the sensorimotor, supramarginal and fusiform gyrus, suggesting that AD may be reflecting pyramidal cell degeneration in HD. Together, these results suggest that white matter microstructural changes in HD reflect a complex, clinically relevant and dynamic process. Keywords: Huntington's disease, Pre-manifest Huntington's, White matter degeneratio
    corecore