13 research outputs found

    Assessment of Seasonal and Annual Rainfall Trends and Variability in Sharjah City, UAE

    Get PDF
    Although a few studies on rainfall spatial and temporal variability in the UAE have been carried out, evidence of the impact of climate change on rainfall trends has not been reported. This study aims at assessing the significance of long-term rainfall trends and temporal variability at Sharjah City, UAE. Annual rainfall and seasonal rainfall extending over a period of 81 years (1934–2014) recorded at Sharjah International Airport have been analyzed. To this end, several parametric and nonparametric statistical measures have been applied following systematic data quality assessment. The analyses revealed that the annual rainfall trend decreased from −3 mm to −9.4 mm per decade over the study periods. The decreasing annual rainfall trend is mainly driven by the significant drop in winter rainfall, particularly during the period from 1977 to 2014. The results also indicate that high probability extreme events have shifted toward low frequency (12.7 years) with significant variations in monthly rainfall patterns and periodicity. The findings of the present study suggest reevaluating the derivation of design rainfall for infrastructure of Sharjah City and urge developing an integrated framework for its water resources planning and risk under climate change impacts scenarios

    Application of Fuzzy Logic to the Management of Flash-Flood Gates

    No full text
    The Second International Symposium on Flash Floods in Wadi Systems: 25-27 October 2016. Technische Universität Berlin, Campus El Gouna, Egypt

    Parameter Estimation and Assessment of Infiltration Models for Madjez Ressoul Catchment, Algeria

    No full text
    Evaluation and modeling of soil water infiltration are essential to all aspects of water resources management and the design of hydraulic structures. Nonetheless, research focused on experimental studies of infiltration rates in arid and semi-arid regions under unknown boundary conditions remains minimal. This paper investigates the characteristics of the spatial variability of infiltration over a semi-arid rural basin of Algeria. The experiments were conducted using a portable double-ring infiltrometer filled at an equal volume of approximately 100 L of water for each of the 25 catchment locations. Soil moisture contents at the proximity of each test location were evaluated in the laboratory as per the standard NF P94–050 protocol. The experimental results are used to produce the catchment infiltration curves using three statistically fitted infiltration models, namely Horton, Kostiakov, and Philip models. The reliability of the models was assessed using four performance criteria. The statistical regressions of the fitted models suggest that the Horton model is the most suitable to assess the infiltration rate over the catchment with mean coefficients of Nash = 0.963, CC = 0.985, RMSE = 1.839 (cm/h), and Bias = 0.241. The superiority of the Horton model suggests that the initial and final infiltration rates, primarily affected by soil type, initial soil moistures, and land cover, are important predictors of the modeling process over the Madjez Ressoul catchment. The results also infer that the applicability of other models to the different types of undeveloped soils in the study area requires advanced field investigations. This finding will support the understanding of the hydrologic processes over semi-arid basins, especially in advising crop irrigation schemes and methods and managing the recurring flood and drought over the country

    Numerical modeling of liquid spills from the damaged container and collision of two rising bubbles in partially filled enclosure using modified Volume-Of-Fluid (VOF) method

    No full text
    ABSTRACT: In the present work, two crucial shortcomings associated with Volume-Of-Fluid (VOF) model namely: (1) spurious interface smearing arising from false-diffusion errors, and (2) non-physical velocity fluctuation across the physical discontinuities, are systematically addressed, aiming to establish a unique methodological foundation and guidelines for the enhancement of interface-capturing techniques in handling multi-fluid flows. To accomplish this objective, first, a novel third-order bounded convection scheme is derived based on the Normalized Variable Diagram and Total Variation Diminishing concepts (NVD-TVD) and is then applied for the discretization of the volume-fraction equation. To cope with the instability issue induced by pressure fluctuation, the standard version of the implicit non-iterative PISO algorithm is first modified by incorporating the third pressure-correction step into the algorithm and is then utilized for the treatment of the pressure-velocity coupling. A feasibility and applicability of the proposed modifications in dealing with violent free-surface and multi-fluid flows are demonstrated against the five different challenging benchmark cases including two-dimensional dam-break flow over the dry bed, oil spill from the damaged container, single bubble rising, merging of two rising bubbles and two-fluid Rayleigh-Taylor Instability problems. The comparison of the obtained results with previously published literatures vividly corroborates the robustness and versatility of the modified VOF model in handling multi-fluid flows involving interface coalescence and breakup events. In the last staged, three new benchmark solutions namely (1) coalescence of two consecutive bubbles inside the partially filled enclosure, (2) two-dimensional three-fluid Rayleigh-Taylor Instability, and (3) oil/water spilling from the damaged tank are analyzed using the verified VOF method, aiming to provide a high-quality validation data for CFD simulations

    Numerical simulation of merging of two rising bubbles with different densities and diameters using an enhanced Volume-Of-Fluid (VOF) model

    No full text
    In this study, the transient evolution of two rising bubbles with different densities is investigated numerically using an enhanced version of the VOF model, aiming to establish an state-of-the-art benchmark solutions and up-to-date data set for CFD validations. The simulations are performed on the staggered grid system where a novel third‐order accurate monotone convection scheme is applied for the discretization of the convection terms in Navier-Stokes and volume fraction equations while the semi-iterative PISOC algorithm (a combined version of the classical PISO and Chorin's model) are used to solve the pressure-velocity coupling. To reduce the false diffusion errors and mitigate smearing of interface thickness in the regions of physical discontinuities, the interface compression technique is also incorporated into the transport equation. To further enhance the accuracy of the numerical solutions, the idea of Piecewise Linear Interface Calculation (PLIC) based on the ELVIRA technique (Efficient Least-square Volume-of-fluid Interface Reconstruction Algorithm) is also utilized for the interface reconstruction and accurate implementation of surface tension force. The validity and accuracy of the enhanced VOF model is further demonstrated against a series of challenging benchmark cases including draining of liquids from the storage tank (tank draining), single rising bubble, three-phase Rayleigh-Taylor Instability and dam-break flows over dry and wet beds. The comparison of the obtained results with previously published data vividly demonstrates the superiority of the proposed method over the standard VOF/Level-Set models in handling multiphase/multi-fluid flow problems with large topological changes. In the last stage, the morphology and hydrodynamic characteristics of merging of two rising bubbles with different densities and diameters are examined and analyzed in details. The results show that, the initial/final deformations and the subsequent steady-state rise of two bubbles are remarkably influenced by the diameters of leading (upper) and trailing (lower) bubbles

    Erratum to: Comparative assessment between GR model and tank model for rainfall-runoff analysis using Kalman filterapplication to Algerian basins-.

    No full text
    Modeling the rainfall-runoff relationship with conceptual models has always been a fascinating subject for hydrologists in view of its practical importance and complexity. This study presents a comparative assessment of the performance of two well established rainfall-runoff conceptual models. A first model called: Model ‘Genie Rural’ (i.e. Agricultural Engineering) and abbreviated GR, developed by Cemagref has been extensively tested in the Mediterranean watersheds and some basins in African countries. When applied to Algerian basins, the different version of the GR model gave satisfactory results, particularly for long time steps (monthly and annual data). In this work, the tank Model by Sugawara using Kalman filter for adaptive calibration is developed and tested for the first time to assess rainfall-runoff in Algerian basins. The results appear to be very prominent and far better than those given by the GR models including daily time steps. Indeed, a comparison between the two models established for daily and monthly data was performed on the three (03) Algerian Basins (i.e. Isser, Zardezas basin and Cheffia). Calibration of the Tank model parameters was performed by Kalman filter. Furthermore, the structure of tank model (i.e: number of tanks, number of outlets in each tank, and their location) was determinated for the studied basins

    Erratum to: Comparative assessment between GR model and tank model for rainfall-runoff analysis using Kalman filterapplication to Algerian basins-.

    No full text
    Modeling the rainfall-runoff relationship with conceptual models has always been a fascinating subject for hydrologists in view of its practical importance and complexity. This study presents a comparative assessment of the performance of two well established rainfall-runoff conceptual models. A first model called: Model ‘Genie Rural’ (i.e. Agricultural Engineering) and abbreviated GR, developed by Cemagref has been extensively tested in the Mediterranean watersheds and some basins in African countries. When applied to Algerian basins, the different version of the GR model gave satisfactory results, particularly for long time steps (monthly and annual data). In this work, the tank Model by Sugawara using Kalman filter for adaptive calibration is developed and tested for the first time to assess rainfall-runoff in Algerian basins. The results appear to be very prominent and far better than those given by the GR models including daily time steps. Indeed, a comparison between the two models established for daily and monthly data was performed on the three (03) Algerian Basins (i.e. Isser, Zardezas basin and Cheffia). Calibration of the Tank model parameters was performed by Kalman filter. Furthermore, the structure of tank model (i.e: number of tanks, number of outlets in each tank, and their location) was determinated for the studied basins
    corecore