12 research outputs found

    Fast multiatlas selection using composition of transformations for radiation therapy planning

    No full text
    In radiation therapy, multiatlas segmentation is recognized as being accurate, but is generally not considered scalable since the highest accuracy is achieved only when using a large atlas database. The fundamental problem is to use such a large database, to accurately represent the population variability, while conserving a relatively small computational cost. A method based on the composition of transformations is proposed to address this issue. The main novelties and key contributions of this paper are the definition of a transitivity error function and the presentation of an image clustering scheme that is based solely on the computed registration transformations. Leave-one-out experiments conducted on a database of N = 50 MR prostate scans demonstrate that a reduction of (N - 1) = 49x in the number of pre-alignment registrations, and of 3.2x in term of total registration effort, is possible without significant impact on segmentation quality

    Tumor Tissue Detection using Blood-Oxygen-Level-Dependent Functional MRI based on Independent Component Analysis

    Get PDF
    Abstract Accurate delineation of gliomas from the surrounding normal brain areas helps maximize tumor resection and improves outcome. Blood-oxygen-level-dependent (BOLD) functional MRI (fMRI) has been routinely adopted for presurgical mapping of the surrounding functional areas. For completely utilizing such imaging data, here we show the feasibility of using presurgical fMRI for tumor delineation. In particular, we introduce a novel method dedicated to tumor detection based on independent component analysis (ICA) of resting-state fMRI (rs-fMRI) with automatic tumor component identification. Multi-center rs-fMRI data of 32 glioma patients from three centers, plus the additional proof-of-concept data of 28 patients from the fourth center with non-brain musculoskeletal tumors, are fed into individual ICA with different total number of components (TNCs). The best-fitted tumor-related components derived from the optimized TNCs setting are automatically determined based on a new template-matching algorithm. The success rates are 100%, 100% and 93.75% for glioma tissue detection for the three centers, respectively, and 85.19% for musculoskeletal tumor detection. We propose that the high success rate could come from the previously overlooked ability of BOLD rs-fMRI in characterizing the abnormal vascularization, vasomotion and perfusion caused by tumors. Our findings suggest an additional usage of the rs-fMRI for comprehensive presurgical assessment

    Procurement and Distribution of Pre-Hispanic Mesoamerican Obsidian 900 BC–AD 1520: a Social Network Analysis

    No full text
    corecore