3 research outputs found

    Elastin Barrier Membranes for Guided Tissue Regeneration Technologies

    Get PDF
    This article discusses the prospects for the use of new elastin barrier membranes manufactured using adapted technologies for the selective isolation of the elastin component from the extracellular xenogenic matrix of the pericardium ligamentous apparatus: (1) by high-temperature extraction under pressure; (2) cyanogen bromide method. A commercial material, Geistlich Bio–Gide® membrane (BG), was used as a control comparison group. It is shown that the materials of group (1) have a high degree of biocompatibility, exceeding the indicators of the control group BG. Based on the results of an study in a model of subcutaneous heterotopic implantation in rats, it was shown that elastin BM has a chemoattractant effect on the mesenchymal recipient cells and, unlike the control, is able to integrate to a high degree into the surrounding recipient tissues. At the same time, the materials of group (1) had a pronounced proangiogenic effect. Thus, it has been shown that elastin BM groups (1) have a medium-term barrier function and are able to induce full-fledged cellular repopulation and local neoangiogenesis, which can be useful in clinical practice, primarily in GTR technologies (with gingival flap augmentation) or when used together with other BM as an angiogenesis inducer to ensure formation of the vascular bed in GBR technologies of bone tissue

    Use of Azospirillum baldaniorum cells in quercetin detection

    Get PDF
    The possibility of detection and determination of flavonoids by using microbial cells was shown for the first time using the quercetin - Azospirillum baldaniorum Sp245 model system. The activity of the flavonoids quercetin, rutin and naringenin toward A. baldaniorum Sp245 was evaluated. It was found that when the quercetin concentration ranged from 50 to 100 µM, the number of bacterial cells decreased. Rutin and naringenin did not affect bacterial numbers. Quercetin at 100 μM increased bacterial impedance by 60 %. Under the effect of quercetin, the magnitude of the electro-optical signal from cells decreased by 75 %, as compared with the no-quercetin control. Our data show the possibility of developing sensor-based systems for the detection and determination of flavonoids

    Elastin Barrier Membranes for Guided Tissue Regeneration Technologies

    No full text
    This article discusses the prospects for the use of new elastin barrier membranes manufactured using adapted technologies for the selective isolation of the elastin component from the extracellular xenogenic matrix of the pericardium ligamentous apparatus: (1) by high-temperature extraction under pressure; (2) cyanogen bromide method. A commercial material, Geistlich Bio–Gide® membrane (BG), was used as a control comparison group. It is shown that the materials of group (1) have a high degree of biocompatibility, exceeding the indicators of the control group BG. Based on the results of an study in a model of subcutaneous heterotopic implantation in rats, it was shown that elastin BM has a chemoattractant effect on the mesenchymal recipient cells and, unlike the control, is able to integrate to a high degree into the surrounding recipient tissues. At the same time, the materials of group (1) had a pronounced proangiogenic effect. Thus, it has been shown that elastin BM groups (1) have a medium-term barrier function and are able to induce full-fledged cellular repopulation and local neoangiogenesis, which can be useful in clinical practice, primarily in GTR technologies (with gingival flap augmentation) or when used together with other BM as an angiogenesis inducer to ensure formation of the vascular bed in GBR technologies of bone tissue
    corecore