30 research outputs found

    Uncertainty relations in curved spaces

    Full text link
    Uncertainty relations for particle motion in curved spaces are discussed. The relations are shown to be topologically invariant. New coordinate system on a sphere appropriate to the problem is proposed. The case of a sphere is considered in details. The investigation can be of interest for string and brane theory, solid state physics (quantum wires) and quantum optics.Comment: published version; phase space structure discussion adde

    Axiomatic Holonomy Maps and Generalized Yang-Mills Moduli Space

    Full text link
    This article is a follow-up of ``Holonomy and Path Structures in General Relativity and Yang-Mills Theory" by Barrett, J. W. (Int.J.Theor.Phys., vol.30, No.9, 1991). Its main goal is to provide an alternative proof of this part of the reconstruction theorem which concerns the existence of a connection. A construction of connection 1-form is presented. The formula expressing the local coefficients of connection in terms of the holonomy map is obtained as an immediate consequence of that construction. Thus the derived formula coincides with that used in "On Loop Space Formulation of Gauge Theories" by Chan, H.-M., Scharbach, P. and Tsou S.T. (Ann.Phys., vol.167, 454-472, 1986). The reconstruction and representation theorems form a generalization of the fact that the pointed configuration space of the classical Yang-Mills theory is equivalent to the set of all holonomy maps. The point of this generalization is that there is a one-to-one correspondence not only between the holonomy maps and the orbits in the space of connections, but also between all maps from the loop space on MM to group GG fulfilling some axioms and all possible equivalence classes of P(M,G)P(M,G) bundles with connection, where the equivalence relation is defined by bundle isomorphism in a natural way.Comment: amslatex, 7 pages, no figure

    Representations of Spacetime Alternatives and Their Classical Limits

    Full text link
    Different quantum mechanical operators can correspond to the same classical quantity. Hermitian operators differing only by operator ordering of the canonical coordinates and momenta at one moment of time are the most familiar example. Classical spacetime alternatives that extend over time can also be represented by different quantum operators. For example, operators representing a particular value of the time average of a dynamical variable can be constructed in two ways: First, as the projection onto the value of the time averaged Heisenberg picture operator for the dynamical variable. Second, as the class operator defined by a sum over those histories of the dynamical variable that have the specified time-averaged value. We show both by explicit example and general argument that the predictions of these different representations agree in the classical limit and that sets of histories represented by them decohere in that limit.Comment: 11 pages, 10 figures, Revtex4, minor correction

    Synchrotron radiation representation in phase space

    Full text link
    The notion of brightness is efficiently conveyed in geometric optics as density of rays in phase space. Wigner has introduced his famous distribution in quantum mechanics as a quasi-probability density of a quantum system in phase space. Naturally, the same formalism can be used to represent light including all the wave phenomena. It provides a natural framework for radiation propagation and optics matching by transferring the familiar `baggage' of accelerator physics (beta-function, emittance, phase space transforms, etc.) to synchrotron radiation. This paper details many of the properties of the Wigner distribution and provides examples of how its use enables physically insightful description of partially coherent synchrotron radiation in phase space

    Covariant Quantization of d=4 Brink-Schwarz Superparticle with Lorentz Harmonics

    Full text link
    Covariant first and second quantization of the free d=4 massless superparticle are implemented with the introduction of purely gauge auxiliary spinor Lorentz harmonics. It is shown that the general solution of the condition of maslessness is a sum of two independent chiral superfields with each of them corresponding to finite superspin. A translationally covariant, in general bijective correspondence between harmonic and massless superfields is constructed. By calculation of the commutation function it is shown that in the considered approach only harmonic fields with correct connection between spin and statistics and with integer negative homogeneity index satisfy the microcausality condition. It is emphasized that harmonic fields that arise are reducible at integer points. The index spinor technique is used to describe infinite-component fields of finite spin; the equations of motion of such fields are obtained, and for them Weinberg's theorem on the connection between massless helicity particles and the type of nongauge field that describes them is generalized.Comment: V2: 1 + 26 pages, published versio

    Bell inequalities and entanglement in solid state devices

    Full text link
    Bell-inequality checks constitute a probe of entanglement -- given a source of entangled particles, their violation are a signature of the non-local nature of quantum mechanics. Here, we study a solid state device producing pairs of entangled electrons, a superconductor emitting Cooper pairs properly split into the two arms of a normal-metallic fork with the help of appropriate filters. We formulate Bell-type inequalities in terms of current-current cross-correlators, the natural quantities measured in mesoscopic physics; their violation provides evidence that this device indeed is a source of entangled electrons.Comment: 4 pages, 1 figur

    A thin film model

    No full text

    Generalized coherent states and quantized fields over de Sitter space

    Full text link
    Using the natural extension of the notion of the generalized coherent states the scalar and spinor ones for the de Sitter group SO(4,1) are constructed. These systems of coherent states obey the de Sitter--invariant Klein-Gordon and Dirac equations and correspond to the massive spin~0 and~1/2 particles over de Sitter space. These coherent states are used for the construction of the invariant scalar and spinor propagators over de Sitter space.Comment: This paper has been withdrawn since its results now explained in hep-th/0001040 and hep-th/000106
    corecore