3 research outputs found

    Postnonclassical methodology and application of virtual reality technologies in social research.

    Get PDF
    The postnonclassical paradigm has increasingly become a conceptual basis for social research in various fields in an attempt to overcome the limitations of the classical and non-classical approaches. Subjects of social research activities require changes in the paradigm at all levels of research: from the statement of the problem to the elaboration of the appropriate methods and the analysis of the research data. The search for new research methods, technologies and techniques plays a crucial role in this process. One of the most promising methods that has rapidly developed in recent years is the technology of virtual reality (VR). This technology is being widely applied to both natural science and social science research. In this article, we examine the possibilities of using VR technology for the resolution of current tasks in social research from the perspective of the postnonclassical approach

    An investigation of 3D images of the simultaneous-lightness-contrast illusion using a virtual-reality technique

    No full text
    This article investigates the problem of lightness perception. To clarify the role of depth in lightness perception two current models—the albedo hypothesis and the coplanar-ratio hypothesis—are discussed. To compare them the strength of the simultaneous-lightnesscontrast (SLC) illusion was investigated as a function of three-dimensional (3D) configurations of the test and background squares. In accordance with both hypotheses the changes in the depth arrangements of the test and background squares should result in changes in the illusory effect. However, the reasons for and the directions of these changes should be different. Five different types of 3D configurations were created in which the test squares were tilted at different angles to the background squares. A virtual-reality technique was used to present stereo pairs of different 3D configurations. Thirty-seven observers took part in the experiment. The method of constant stimuli was used to obtain psychometric functions. The displacements of these functions for 3D configurations in comparison with the 2D configuration allowed the estimation of illusion strength. The analysis of individual values of illusion strength revealed two groups of subjects. For the first group (38% of all participants) the strength changed insignificantly depending on the 3D configurations. For the second group (62% of all participants) significant differences were obtained for those configurations in which the test and background squares were perceived as differently illuminated. The changes in the SLC illusion strength for the second group were consistent with predictions made by the albedo hypothesis. Thus, it seems that the perceived illumination of a surface should be considered the main parameter for lightness estimations in 3D scenes

    utomated real-time classification of functional states: the significance of individual tuning stage

    No full text
    Automated classification of a human functional state is an important problem, with applications including stress resistance evaluation, supervision over operators of critical infrastructure, teaching and phobia therapy. Such classification is particularly efficient in systems for teaching and phobia therapy that include a virtual reality module, and provide the capability for dynamic adjustment of task complexity. In this paper, a method for automated real-time binary classification of human functional states (calm wakefulness vs. stress) based on discrete wavelet transform of EEG data is considered. It is shown that an individual tuning stage of the classification algorithm — a stage that allows the involvement of certain information on individual peculiarities in the classification, using very short individual learning samples, significantly increases classification reliability. The experimental study that proved this assertion was based on a specialized scenario in which individuals solved the task of detecting objects with given properties in a dynamic set of flying objects
    corecore