213 research outputs found

    The role of bisphosphonates in breast cancer: Development of bisphosphonates

    Get PDF
    Bisphosphonates are synthetic compounds characterized by a P–C–P group, and are thus analogs of inorganic pyrophosphate. They are used in medicine mainly to inhibit bone resorption in diseases like osteoporosis, Paget's disease and tumor bone disease. They have been used for over a century in industry, and only in 1968 was it shown that bisphosphonates have biological effects. These effects consist mainly of an inhibition of bone resorption and, when given in large amounts, an inhibition of ectopic and normal calcification. While the latter effect is the consequence of a physical-chemical inhibition of calcium phosphate crystal formation, the former is due to a cellular effect involving both apoptosis of the osteoclasts and a destruction of the osteoclastic cytoskeleton, inducing a decrease in osteoclast activity. The biochemical basis of these effects for the nitrogen-containing compounds is an inhibition of the mevalonate pathway caused by the inhibition of farnesylpyrophosphate synthase, which leads to a decrease of the formation of isoprenoid lipids such as farnesylpyrophosphate and geranylgeranylpyrophosphate. The other bisphosphonates are incorporated into the phosphate chain of ATP-containing compounds so that they become non-hydrolyzable. The new P–C–P-containing ATP analogs inhibit cell function and may lead to apoptosis and death of osteoclasts

    Quaternary ammonium nonanoate-based ionic liquids as chemicals for crop protection

    No full text
    The use of renewable chemicals has become one of the most rapidly developing trends in chemical synthesis. Numerous naturally occurring compounds become green alternatives for traditional oleochemicals due to the fact that they exhibit a wide range of attractive properties. Substances such as pelargonic (nonanoic) acid, which are obtained as secondary metabolites from plants or microorganisms, play a major role in their defense systems by protecting them from diseases, herbivores or predators. Therefore, due to their unique biological properties, the natural chemicals are potential components of ionic liquids (ILs). In this study, the synthesis and properties of ammonium ILs with nonanoate anion are presented. The reactions were conducted in a short time under ambient temperature and pressure. The products were obtained with high yields. The synthesized ILs were characterized by good surface active properties. Didecyldimethylammonium nonanoate reduced the surface tension of water to 21.86 mN/m. The feeding deterrence activity of the obtained nonanoates was also examined and the studied ILs exhibited high feeding deterrence activity, comparable to natural occurring antifeedants, azadirachtin. Additionally, the synthesized ILs were also active towards rods, cocci and fungi. The obtained results allowed to link surface properties with biological activity of synthesized ILs
    • 

    corecore