5 research outputs found

    Think Big, Epidemiological Research on Tiny Molecules: The role of microRNAs in age-related diseases

    Get PDF
    An epidemiological study of the function of microRNAs in aging and cardiometabolic health. The potential of microRNAs as a biomarker has been studied in type 2 diabetes, cardiovascular disease, stroke, arrhythmias and multiple risk factors

    Cell Cycle Regulation of Stem Cells by MicroRNAs

    Get PDF
    MicroRNAs (miRNAs) are a class of small non-coding RNA molecules involved in the regulation of gene expression. They are involved in the fine-tuning of fundamental biological processes such as proliferation, differentiation, survival and apoptosis in many cell types. Emerging evidence suggests that miRNAs regulate critical pathways involved in stem cell function. Several miRNAs have been suggested to target transcripts that directly or indirectly coordinate the cell cycle progression of stem cells. Moreover, previous studies have shown that altered expression levels of miRNAs can contribute to pathological conditions, such as cancer, due to the loss of cell cycle regulation. However, the precise mechanism underlying miRNA-mediated regulation of cell cycle in stem cells is still incompletely understood. In this review, we discuss current knowledge of miRNAs regulatory role in cell cycle progression of stem cells. We describe how specific miRNAs may control cell cycle associated molecules and checkpoints in embryonic, somatic and cancer stem cells. We further outline how these miRNAs could be regulated to influence cell cycle progression in stem cells as a potential clinical application

    Multi-Omics Analysis Reveals MicroRNAs Associated With Cardiometabolic Traits

    Get PDF
    MicroRNAs (miRNAs) are non-coding RNA molecules that regulate gene expression. Extensive research has explored the role of miRNAs in the risk for type 2 diabetes (T2D) and

    Circulatory microRNAs as potential biomarkers for fatty liver disease: the Rotterdam study

    Get PDF
    Background: Fatty liver disease (FLD) is the most common cause of liver dysfunction in developed countries. There is great interest in developing clinically valid and minimally invasive biomarkers to enhance early diagnosis of FLD. Aim: To investigate the potential of circulatory microRNAs (miRNAs) as biomarkers of FLD at the population level. Methods: Plasma levels of 2083 miRNAs were measured by RNA sequencing in 1999 participants from the prospective population-based Rotterdam Study cohort. The Hounsfield Unit (HU) attenuation of liver was measured using non-enhanced computed tomography (CT) scan. Logistic and linear regression models adjusting for potential confounders were used to examine the association of circulatory miRNAs with liver enzymes (n = 1991) and CT-based FLD (n = 954). Moreover, the association of miRNAs with hepatic steatosis and liver fibrosis was assessed longitudinally in individuals who underwent abdominal ultrasound (n = 1211) and transient elastography (n = 777) after a median follow-up of >6 years. Results: Cross-sectional analysis showed 61 miRNAs significantly associated with serum gamma-glutamyl transferase and/or alkaline phosphatase levels (Bonferroni-corrected P < 8.46 × 10−5). Moreover, 17 miRNAs were significantly associated with CT-based FLD (P < 8.46 × 10−5); 14 were among miRNAs associated with liver enzymes. Longitudinal analysis showed that 4 of these 14 miRNAs (miR-193a-5p, miR-122-5p, miR-378d and miR-187-3p) were significantly associated with hepatic steatosis (P < 3.57 × 10−3) and three (miR-193a-5p, miR-122-5p and miR-193b-3p) were nominally associated with liver fibrosis (P < 0.05). Nine of the 14 identified miRNAs were involved in pathways underlying liver diseases. Conclusions: Plasma levels of several miRNAs can be used as biomarkers of FLD, laying the groundwork for future clinical applications

    Design, implementation and initial findings of COVID-19 research in the Rotterdam Study

    No full text
    The Rotterdam Study is an ongoing prospective, population-based cohort study that started in 1989 in the city of Rotterdam, the Netherlands. The study aims to unravel etiology, preclinical course, natural history and potential targets for intervention for chronic diseases in mid-life and late-life. It focuses on cardiovascular, endocrine, hepatic, neurological, ophthalmic, psychiatric, dermatological, otolaryngological, locomotor, and respiratory diseases. In response to the COVID-19 pandemic, a substudy was designed and embedded within the Rotterdam Study. On the 20th of April, 2020, all living non-institutionalized participants of the Rotterdam Study (n = 8732) were invited to participate in this sub-study by filling out a series of questionnaires administered over a period of 8 months. These questionnaires included questions on COVID-19 related symptoms and risk factors, characterization of lifestyle and mental health changes, and determination of health care seeking and health care avoiding behavior during the pandemic. As of May 2021, the questionnaire had been sent out repeatedly for a total of six times with an overall response rate of 76%. This article provides an overview of the rationale, design, and implementation of this sub-study nested within the Rotterdam Study. Finally, initial results on participant characteristics and prevalence of COVID-19 in this community-dwelling population are shown.</p
    corecore