3 research outputs found

    Public Health and Cost Benefits of Successful Reperfusion After Thrombectomy for Stroke

    Get PDF
    Background and Purpose- The benefit that endovascular thrombectomy offers to patients with stroke with large vessel occlusions depends strongly on reperfusion grade as defined by the expanded Thrombolysis in Cerebral Infarction (eTICI) scale. Our aim was to determine the lifetime health and cost consequences of the quality of reperfusion for patients, healthcare systems, and society. Methods- A Markov model estimated lifetime quality-adjusted life years (QALY) and lifetime costs of endovascular thrombectomy-treated patients with stroke based on eTICI grades. The analysis was performed over a lifetime horizon in a United States setting, adopting healthcare and societal perspectives. The reference case analysis was conducted for stroke at 65 years of age. National health and cost consequences of improved eTICI 2c/3 reperfusion rates were estimated. Input parameters were based on best available evidence. Results- Lifetime QALYs increased for every grade of improved reperfusion (median QALYs for eTICI 0/1: 2.62; eTICI 2a: 3.46; eTICI 2b: 5.42; eTICI 2c: 5.99; eTICI 3: 6.73). Achieving eTICI 3 over eTICI 2b reperfusion resulted on average in 1.31 incremental QALYs as well as healthcare and societal cost savings of 10327and10 327 and 20 224 per patient. A 10% increase in the eTICI 2c/3 reperfusion rate of all annually endovascular thrombectomy-treated patients with stroke in the United States is estimated to yield additional 3656 QALYs and save 21.0millionand21.0 million and 36.8 million for the healthcare system and society, respectively. Conclusions- Improved reperfusion grants patients with stroke additional QALYs and leads to long-term cost savings. Procedural strategies to achieve complete reperfusion should be assessed for safety and feasibility, even when initial reperfusion seems to be adequate

    Added value of multiphase CTA imaging for thrombus perviousness assessment

    Get PDF
    Purpose: Thrombus perviousness has been associated with favorable functional outcome in acute ischemic stroke (AIS) patients. Measuring thrombus perviousness on CTA may be suboptimal due to potential delay in contrast agent arrival in occluded arteries at the moment of imaging. Dynamic sequences acquired over time can potentially overcome this issue. We investigate if dynamic CTA has added value in assessing thrombus perviousness. Methods: Prospectively collected image data of AIS patients with proven occlusion of the anterior or posterior circulation with thin-slice multi-phase CTA (MCTA) and non-contrast CT were co-registered (n = 221). Thrombus attenuation increase (TAI; a perviousness measure) was measured for the arterial, venous, and delayed phase of the MCTA and time-invariant CTAs (TiCTA). Associations with favorable clinical outcome (90-day mRS ≤ 2) were assessed using univariate and multivariable regressions and calculating areas under receiver operating curves (AUC). Results: TAI determined from the arterial phase CTA was superior in the association with favorable outcome with OR = 1.21 per 10 HU increase (95%CI 1.04–1.41, AUC 0.62, p = 0.014) compared to any other phase (venous 1.14(95%CI 1.01–1.30, AUC 0.58, p = 0.033), delayed 1.046(95%CI 0.919–1.19, AUC 0.53, p = 0.50)), and TiCTA (1.15(95%CI 1.02–1.30, AUC 0.60, p = 0.022). In the multivariable model, only TAI on arterial phase was

    Automatic segmentation of cerebral infarcts in follow-up computed tomography images with convolutional neural networks

    Get PDF
    Background and purpose: Infarct volume is a valuable outcome measure in treatment trials of acute ischemic stroke and is strongly associated with functional outcome. Its manual volumetric assessment is, however, too demanding to be implemented in clinical practice. Objective: To assess the value of convolutional neural networks (CNNs) in the automatic segmentation of infarct volume in follow-up CT images in a large population of patients with acute ischemic stroke. Materials and methods: We included CT images of 1026 patients from a large pooling of patients with acute ischemic stroke. A reference standard for the infarct segmentation was generated by manual delineation. We introduce three CNN models for the segmentati
    corecore