37 research outputs found

    A RNA Interference Screen Identifies the Protein Phosphatase 2A Subunit PR55γ as a Stress-Sensitive Inhibitor of c-SRC

    Get PDF
    Protein Phosphatase type 2A (PP2A) represents a family of holoenzyme complexes with diverse biological activities. Specific holoenzyme complexes are thought to be deregulated during oncogenic transformation and oncogene-induced signaling. Since most studies on the role of this phosphatase family have relied on the use of generic PP2A inhibitors, the contribution of individual PP2A holoenzyme complexes in PP2A-controlled signaling pathways is largely unclear. To gain insight into this, we have constructed a set of shRNA vectors targeting the individual PP2A regulatory subunits for suppression by RNA interference. Here, we identify PR55γ and PR55δ as inhibitors of c-Jun NH2-terminal kinase (JNK) activation by UV irradiation. We show that PR55γ binds c-SRC and modulates the phosphorylation of serine 12 of c-SRC, a residue we demonstrate to be required for JNK activation by c-SRC. We also find that the physical interaction between PR55γ and c-SRC is sensitive to UV irradiation. Our data reveal a novel mechanism of c-SRC regulation whereby in response to stress c-SRC activity is regulated, at least in part, through loss of the interaction with its inhibitor, PR55γ

    Reprogramming Factor Stoichiometry Influences the Epigenetic State and Biological Properties of Induced Pluripotent Stem Cells

    Get PDF
    We compared two genetically highly defined transgenic systems to identify parameters affecting reprogramming of somatic cells to a pluripotent state. Our results demonstrate that the level and stoichiometry of reprogramming factors during the reprogramming process strongly influence the resulting pluripotency of iPS cells. High expression of Oct4 and Klf4 combined with lower expression of c-Myc and Sox2 produced iPS cells that efficiently generated “all-iPSC mice” by tetraploid (4n) complementation, maintained normal imprinting at the Dlk1-Dio3 locus, and did not create mice with tumors. Loss of imprinting (LOI) at the Dlk1-Dio3 locus did not strictly correlate with reduced pluripotency though the efficiency of generating “all-iPSC mice” was diminished. Our data indicate that stoichiometry of reprogramming factors can influence epigenetic and biological properties of iPS cells. This concept complicates efforts to define a “generic” epigenetic state of iPSCs and ESCs and should be considered when comparing different iPS and ES cell lines.National Science Foundation (U.S.). Graduate Research Fellowship ProgramNational Institutes of Health (U.S.) (Grant 5-RO1-HDO45022)National Institutes of Health (U.S.) (Grant 5-R37-CA084198)National Institutes of Health (U.S.). (Grant 5-RO1-CA087869

    Hominin-specific regulatory elements selectively emerged in oligodendrocytes and are disrupted in autism patients

    Get PDF
    Speciation is associated with substantial rewiring of the regulatory circuitry underlying the expression of genes. Determining which changes are relevant and underlie the emergence of the human brain or its unique susceptibility to neural disease has been challenging. Here we annotate changes to gene regulatory elements (GREs) at cell type resolution in the brains of multiple primate species spanning most of primate evolution. We identify a unique set of regulatory elements that emerged in hominins prior to the separation of humans and chimpanzees. We demonstrate that these hominin gains perferentially affect oligodendrocyte function postnatally and are preferentially affected in the brains of autism patients. This preference is also observed for human-specific GREs suggesting this system is under continued selective pressure. Our data provide a roadmap of regulatory rewiring across primate evolution providing insight into the genomic changes that underlie the emergence of the brain and its susceptibility to neural disease

    Transcriptional Dynamics at Brain Enhancers: from Functional Specialization to Neurodegeneration

    No full text
    Over the last decade, the noncoding part of the genome has been shown to harbour thousands of cis-regulatory elements, such as enhancers, that activate well-defined gene expression programs. Driven by the development of numerous techniques, many of these elements are now identified in multiple tissues and cell types, and their characteristics as well as importance in development and disease are becoming increasingly clear. Here, we provide an overview of the insights that were gained from the analysis of noncoding gene regulatory elements in the brain and describe their potential contribution to cell type specialization, brain function and neurodegenerative disease

    Transcriptional Dynamics at Brain Enhancers : from Functional Specialization to Neurodegeneration

    No full text
    Over the last decade, the noncoding part of the genome has been shown to harbour thousands of cis-regulatory elements, such as enhancers, that activate well-defined gene expression programs. Driven by the development of numerous techniques, many of these elements are now identified in multiple tissues and cell types, and their characteristics as well as importance in development and disease are becoming increasingly clear. Here, we provide an overview of the insights that were gained from the analysis of noncoding gene regulatory elements in the brain and describe their potential contribution to cell type specialization, brain function and neurodegenerative disease

    PR72, a novel regulator of Wnt signaling required for Naked cuticle function

    No full text
    The Wnt signaling cascade is a central regulator of cell fate determination during embryonic development, whose deregulation contributes to oncogenesis. Naked cuticle is the first Wnt-induced antagonist found in this pathway, establishing a negative-feedback loop that limits the Wnt signal required for early segmentation. In addition, Naked cuticle is proposed to function as a switch, acting to restrict classical Wnt signaling and to activate a second Wnt signaling pathway that controls planar cell polarity during gastrulation movements in vertebrates. Little is known about the biochemical function of Naked cuticle or its regulation. Here we report that PR72, a Protein Phosphatase type 2A regulatory subunit of unknown function, interacts both physically and functionally with Naked cuticle. We show that PR72, like Naked cuticle, acts as a negative regulator of the classical Wnt signaling cascade, establishing PR72 as a novel regulator of the Wnt signaling pathway. Our data provide evidence that the inhibitory effect of Naked cuticle on Wnt signaling depends on the presence of PR72, both in mammalian cell culture and in Xenopus embryos. Moreover, PR72 is required during early embryonic development to regulate cell morphogenetic movements during body axis formation

    Polarized regulatory landscape and Wnt responsiveness underlie Hox activation in embryos

    No full text
    Sequential 3′-to-5′ activation of the Hox gene clusters in early embryos is a most fascinating issue in developmental biology. Neither the trigger nor the regulatory elements involved in the transcriptional initiation of the 3′-most Hox genes have been unraveled in any organism. We demonstrate that a series of enhancers, some of which are Wnt-dependent, is located within a HoxA 3′ subtopologically associated domain (subTAD). This subTAD forms the structural basis for multiple layers of 3′-polarized features, including DNA accessibility and enhancer activation. Deletion of the cassette of Wnt-dependent enhancers proves its crucial role in initial transcription of HoxA at the 3′ side of the cluster

    Polarized regulatory landscape and Wnt responsiveness underlie Hox activation in embryos

    No full text
    Sequential 3′-to-5′ activation of the Hox gene clusters in early embryos is a most fascinating issue in developmental biology. Neither the trigger nor the regulatory elements involved in the transcriptional initiation of the 3′-most Hox genes have been unraveled in any organism. We demonstrate that a series of enhancers, some of which are Wnt-dependent, is located within a HoxA 3′ subtopologically associated domain (subTAD). This subTAD forms the structural basis for multiple layers of 3′-polarized features, including DNA accessibility and enhancer activation. Deletion of the cassette of Wnt-dependent enhancers proves its crucial role in initial transcription of HoxA at the 3′ side of the cluster
    corecore