173 research outputs found
Parasite, Compartments, and Molecules: Trick versus Treatment on Chagas Disease
Chagas disease, caused by the protozoan Trypanosoma cruzi, is endemic to Latin America, standing out as a socio-economic problem for low-income tropical populations. Such disease affects millions of people worldwide and emerges in nonendemic areas due to migration and climate changes. The current chemotherapy is restricted to two nitroderivatives (benznidazole and nifurtimox), which is unsatisfactory due to limited efficacy (particularly in chronic phase) and adverse side effects. T. cruzi life cycle is complex, including invertebrate and vertebrate hosts and three developmental forms (epimastigotes, trypomastigotes, and amastigotes). In this chapter, we will discuss promising cellular and molecular targets present in the vertebrate-dwelling forms of the parasite (trypomastigotes and amastigotes). Among the cellular targets, the mitochondrion is the most frequently studied; while among the molecular ones, we highlight squalene synthase, C14α-sterol demethylase, and cysteine proteases. In this scenario, proteomics becomes a valuable tool for the identification of other molecular targets, and some previously identified candidates will be also discussed. Multidisciplinary studies are needed to identify novel key molecules in T. cruzi in order to increase trypanocidal activity and reduce mammalian toxicity, ensuring the development of novel drugs for Chagas disease
The brain decade in debate: VII. Neurobiology of sleep and dreams
This article is a transcription of an electronic symposium held on February 5, 2001 by the Brazilian Society of Neuroscience and Behavior (SBNeC) during which eight specialists involved in clinical and experimental research on sleep and dreaming exposed their personal experience and theoretical points of view concerning these highly polemic subjects. Unlike most other bodily functions, sleep and dreaming cannot, so far, be defined in terms of definitive functions that play an ascribable role in maintaining the organism as a whole. Such difficulties appear quite clearly all along the discussions. In this symposium, concepts on sleep function range from a protective behavior to an essential function for maturation of the nervous system. Kleitman's hypothesis [Journal of Nervous and Mental Disease (1974), 159: 293-294] was discussed, according to which the basal state is not the wakeful state but sleep, from which we awake to eat, to protect ourselves, to procreate, etc. Dreams, on the other hand, were widely discussed, being considered either as an important step in consolidation of learning or simply the conscious identification of functional patterns derived from the configuration of released or revoked memorized information.Universidade de SĂŁo Paulo Faculdade de Medicina Instituto de PsiquiatriaUniversity of Laval School of Medicine Department of PhysiologyRutgers State University Center for NeuroscienceUniversidade de SĂŁo Paulo Instituto de CiĂŞncias BiomĂ©dicas Departamento de Fisiologia e BiofĂsicaUniversidade Federal de SĂŁo Paulo (UNIFESP) Instituto do SonhoFacultad de Medicina de Montevideo Departamento de FisiologĂa NeurofisiologĂaFlorida Atlantic University Center for Complex SystemsUniversidade de SĂŁo Paulo Faculdade de Medicina Departamento de NeurologiaUNIFESP, Instituto do SonhoSciEL
Nitric Oxide Resistance in Leishmania (Viannia) braziliensis Involves Regulation of Glucose Consumption, Glutathione Metabolism and Abundance of Pentose Phosphate Pathway Enzymes
In American Tegumentary Leishmaniasis production of cytokines, reactive oxygen species and nitric oxide (NO) by host macrophages normally lead to parasite death. However, some Leishmania braziliensis strains exhibit natural NO resistance. NO-resistant strains cause more lesions and are frequently more resistant to antimonial treatment than NO-susceptible ones, suggesting that NO-resistant parasites are endowed with specific mechanisms of survival and persistence. To tests this, we analyzed the effect of pro- and antioxidant molecules on the infectivity in vitro of L. braziliensis strains exhibiting polar phenotypes of resistance or susceptibility to NO. In addition, we conducted a comprehensive quantitative mass spectrometry-based proteomics analysis of those parasites. NO-resistant parasites were more infective to peritoneal macrophages, even in the presence of high levels of reactive species. Principal component analysis of protein concentration values clearly differentiated NO-resistant from NO-susceptible parasites, suggesting that there are natural intrinsic differences at molecular level among those strains. Upon NO exposure, NO-resistant parasites rapidly modulated their proteome, increasing their total protein content and glutathione (GSH) metabolism. Furthermore, NO-resistant parasites showed increased glucose analogue uptake, and increased abundance of phosphotransferase and G6PDH after nitrosative challenge, which can contribute to NADPH pool maintenance and fuel the reducing conditions for the recovery of GSH upon NO exposure. Thus, increased glucose consumption and GSH-mediated redox capability may explain the natural resistance of L. braziliensis against NO
In-depth quantitative proteomics uncovers specie-specific metabolic programs in Leishmania (Viannia) species
Author summary Leishmania braziliensis,L.panamensis, andL.guyanensisare responsible for most of the cases of tegumentary leishmaniasis (TL) in the Americas. These species are associated with a variety of clinical manifestations of TL ranging from self-healing localized cutaneous lesions to disseminated and mucocutaneous presentations that may result in severe oropharyngeal mutilation. Here, we report a comprehensive quantitative comparison of the proteome of those species. Assessment of absolute titers of similar to 7000 proteins revealed a very clear differentiation among them. Significant differences in energy metabolism, membrane proteins, transporters, and lipids are contributing for species-specific traits and provide rich substrate for exploring new molecules for diagnosing purposes. Leishmaniaspecies are responsible for a broad spectrum of diseases, denominated Leishmaniasis, affecting over 12 million people worldwide. During the last decade, there have been impressive efforts for sequencing the genome of most of the pathogenicLeishmaniaspp. as well as hundreds of strains, but large-scale proteomics analyses did not follow these achievements and theLeishmaniaproteome remained mostly uncharacterized. Here, we report a comprehensive comparative study of the proteomes of strains representingL.braziliensis,L.panamensisandL.guyanensisspecies. Proteins extracted by SDS-mediated lysis were processed following the multi-enzyme digestion-filter aided sample preparation (FASP) procedure and analysed by high accuracy mass spectrometry. "Total Protein Approach" and "Proteomic Ruler" were applied for absolute quantification of proteins. Principal component analysis demonstrated very high reproducibility among biological replicates and a very clear differentiation of the three species. Our dataset comprises near 7000 proteins, representing the most completeLeishmaniaproteome yet known, and provides a comprehensive quantitative picture of the proteomes of the three species in terms of protein concentration and copy numbers. Analysis of the abundance of proteins from the major energy metabolic processes allow us to highlight remarkably differences among the species and suggest that these parasites depend on distinct energy substrates to obtain ATP. WhereasL.braziliensisrelies the more on glycolysis,L.panamensisandL.guyanensisseem to depend mainly on mitochondrial respiration. These results were confirmed by biochemical assays showing opposite profiles for glucose uptake and O(2)consumption in these species. In addition, we provide quantitative data about different membrane proteins, transporters, and lipids, all of which contribute for significant species-specific differences and provide rich substrate for explore new molecules for diagnosing purposes. Data are available via ProteomeXchange with identifier PXD017696
Chronotype ontogeny related to gender
Chronotype is an established concept designed to identify distinct phase relationships between the expression of circadian rhythms and external synchronizers in humans. Although it has been widely accepted that chronotype is subjected to ontogenetic modulation, there is no consensus on the interaction between age and gender. This study aimed to determine the relationship between age- and gender-related changes in the morningness-eveningness character in a large sample of people. A total of 14,650 volunteers were asked to complete the Brazilian version of the Horne and Ă–stberg chronotype questionnaire. The data demonstrated that, on average, women were more morning-oriented than men until the age of 30 and there were no significant differences between men and women from 30 to 45 years of age. In contrast to the situation observed until the age of 30, women older than 45 years were more evening-oriented than men. These results suggest that the ontogenetic development of the circadian timekeeping system is more plastic in men, as represented by the larger amplitude of chronotype changes throughout their aging process. The phase delay of adolescence and phase advance of the elderly seem to be phenomena that are more markedly present in men than in women. Thus, our data, for the first time, provide support that sharply opposes the view that there is a single path toward morningness as a function of age, regardless of gender
Silver(I) 1,10-Phenanthroline Complexes Are Active against Fonsecaea Pedrosoi Viability and Negatively Modulate Its Potential Virulence Attributes
The genus Fonsecaea is one of the etiological agents of chromoblastomycosis (CBM), a chronic subcutaneous disease that is difficult to treat. This work aimed to evaluate the effects of copper(II), manganese(II) and silver(I) complexes coordinated with 1,10-phenanthroline (phen)/1,10- phenanthroline-5,6-dione (phendione) on Fonsecaea spp. Our results revealed that most of these complexes were able to inhibit F. pedrosoi, F. monophora and F. nubica conidial viability with minimum inhibitory concentration (MIC) values ranging from 0.6 to 100 M. The most effective complexes against F. pedrosoi planktonic conidial cells, the main etiologic agent of CBM, were [Ag(phen)2]ClO4 and [Ag2(3,6,9-tdda)(phen)4].EtOH, (tdda: 3,6,9-trioxaundecanedioate), displaying MIC values equal to 1.2 and 0.6 M, respectively. These complexes were effective in reducing the viability of F. pedrosoi biofilm formation and maturation. Silver(I) tdda-phen, combined with itraconazole, reduced the viability and extracellular matrix during F. pedrosoi biofilm development. Moreover, both silver(I) complexes inhibited either metallo- or aspartic-type peptidase activities of F. pedrosoi as well as its conidia into mycelia transformation and melanin production. In addition, the complexes induced the production of intracellular reactive oxygen species in F. pedrosoi. Taken together, our data corroborate the antifungal action of metal-phen complexes, showing they represent a therapeutic option for fungal infections, including CBM
Prevalence and Severity of Asthma, Rhinitis, and Atopic Eczema in 13- to 14-Year-Old Schoolchildren from Southern Brazil
The objective of this study was to investigate the prevalence and severity of asthma, rhinitis, and atopic eczema in schoolchildren from southern Brazil. A cross-sectional study was carried out with the International Study of Asthma and Allergies in Childhood phase III written questionnaire. The questionnaire was self-applied by 2,948 randomly selected schoolchildren aged 13 to 14 years. The lifetime prevalence rates of symptoms were as follows: wheezing, 40.8%; rhinitis, 40.7%; eczema, 13.6%; self-reported asthma, 14.6%; rhinitis, 31.4%; eczema, 13.4%. Rhinitis was reported by 55% of adolescents with current asthma (60% females vs 46.9% males). Girls 13 to 14 years of age had higher prevalence rates of asthma, rhinitis, and eczema than boys had. Atopic eczema was reported by 42.7% of girls and 31.4% of boys with asthma. The prevalence rates were statistically significant for symptoms of asthma, rhinitis, and atopic eczema in females. However, there were no statistically significant differences between the sexes in regard to reported asthma and bronchospasm induced by exercise
- …