3 research outputs found

    Classification of Firewall Log Data Using Multiclass Machine Learning Models

    No full text
    These days, we are witnessing unprecedented challenges to network security. This indeed confirms that network security has become increasingly important. Firewall logs are important sources of evidence, but they are still difficult to analyze. Artificial Intelligence (AI), Machine Learning (ML), and Deep Learning (DL) have emerged as effective in developing robust security measures due to the fact that they have the capability to deal with complex cyberattacks in a timely manner. This work aims to tackle the difficulty of analyzing firewall logs using ML and DL by building multiclass ML and DL models that can analyze firewall logs and classify the actions to be taken in response to received sessions as “Allow”, “Drop”, “Deny”, or “Reset-both”. Two sets of empirical evaluations were conducted in order to assess the performance of the produced models. Different features set were used in each set of the empirical evaluation. Further, two extra features, namely, application and category, were proposed to enhance the performance of the proposed models. Several ML and DL algorithms were used for the evaluation purposes, namely, K-Nearest Neighbor (KNN), Naïve Bayas (NB), J48, Random Forest (RF) and Artificial Neural Network (ANN). One interesting reading in the experimental results is that the RF produced the highest accuracy of 99.11% and 99.64% in the first and the second experiments respectively. Yet, all other algorithms have also produced high accuracy rates which confirm that the proposed features played a significant role in improving the firewall classification rate

    Multiple Sclerosis Diagnosis Using Machine Learning and Deep Learning: Challenges and Opportunities

    No full text
    Multiple Sclerosis (MS) is a disease that impacts the central nervous system (CNS), which can lead to brain, spinal cord, and optic nerve problems. A total of 2.8 million are estimated to suffer from MS. Globally, a new case of MS is reported every five minutes. In this review, we discuss the proposed approaches to diagnosing MS using machine learning (ML) published between 2011 and 2022. Numerous models have been developed using different types of data, including magnetic resonance imaging (MRI) and clinical data. We identified the methods that achieved the best results in diagnosing MS. The most implemented approaches are SVM, RF, and CNN. Moreover, we discussed the challenges and opportunities in MS diagnosis to improve AI systems to enable researchers and practitioners to enhance their approaches and improve the automated diagnosis of MS. The challenges faced by automated MS diagnosis include difficulty distinguishing the disease from other diseases showing similar symptoms, protecting the confidentiality of the patients’ data, achieving reliable ML models that are also easily understood by non-experts, and the difficulty of collecting a large reliable dataset. Moreover, we discussed several opportunities in the field such as the implementation of secure platforms, employing better AI solutions, developing better disease prognosis systems, combining more than one data type for better MS prediction and using OCT data for diagnosis, utilizing larger, multi-center datasets to improve the reliability of the developed models, and commercialization

    Intelligent Techniques for Detecting Network Attacks: Review and Research Directions

    No full text
    The significant growth in the use of the Internet and the rapid development of network technologies are associated with an increased risk of network attacks. Network attacks refer to all types of unauthorized access to a network including any attempts to damage and disrupt the network, often leading to serious consequences. Network attack detection is an active area of research in the community of cybersecurity. In the literature, there are various descriptions of network attack detection systems involving various intelligent-based techniques including machine learning (ML) and deep learning (DL) models. However, although such techniques have proved useful within specific domains, no technique has proved useful in mitigating all kinds of network attacks. This is because some intelligent-based approaches lack essential capabilities that render them reliable systems that are able to confront different types of network attacks. This was the main motivation behind this research, which evaluates contemporary intelligent-based research directions to address the gap that still exists in the field. The main components of any intelligent-based system are the training datasets, the algorithms, and the evaluation metrics; these were the main benchmark criteria used to assess the intelligent-based systems included in this research article. This research provides a rich source of references for scholars seeking to determine their scope of research in this field. Furthermore, although the paper does present a set of suggestions about future inductive directions, it leaves the reader free to derive additional insights about how to develop intelligent-based systems to counter current and future network attacks
    corecore