7 research outputs found

    Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis

    No full text
    Here, we use a loss-of-function approach to demonstrate that the Arabidopsis (Arabidopsis thaliana) mitogen-activated protein kinase (MAPK) MPK6 plays a role in resistance to certain pathogens. MPK6-silenced Arabidopsis showed no apparent morphological phenotype or reduced fertility, indicating MPK6 is not required for development. However, resistances to an avirulent strain of Peronospora parasitica and avirulent and virulent strains of Pseudomonas syringae were compromised, suggesting that MPK6 plays a role in both resistance gene–mediated and basal resistance. Furthermore, this result demonstrates that MPK6's function cannot be fully complemented by other endogenous MAPKs. Although MPK6-silenced plants exhibited enhanced disease susceptibility, their ability to develop systemic acquired resistance or induced systemic resistance was unaffected. Expression of the pathogen-inducible gene VEGETATIVE STORAGE PROTEIN1 (VSP1) in MPK6-silenced plants was severalfold lower than in control plants, but the expression of other defense genes was comparable to the level observed in control plants. Taken together, these results provide direct evidence that a specific MAPK positively regulates VSP1 expression and resistance to a primary infection by certain pathogens, whereas systemic resistance and expression of several other defense genes appears to be mediated either by a functionally redundant MAPK(s) or independently from MPK6-dependent resistance

    Quantitative phospho-proteomics of early elicitor signalling in Arabidopsis

    No full text
    Perception of general elicitors by plant cells initiates signal transduction cascades that are regulated by protein phosphorylation. The earliest signaling events occur within minutes and include ion fluxes across the plasma membrane, activation of MAPKs, and the formation of reactive oxygen species. The phosphorylation events that regulate these signaling cascades are largely unknown. Here we present a mass spectrometry-based quantitative phosphoproteomics approach that identified differentially phosphorylated sites in signaling and response proteins from Arabidopsis cells treated with either flg22 or xylanase. Our approach was sensitive enough to quantitate phosphorylation on low abundance signaling proteins such as calcium-dependent protein kinases and receptor-like kinase family members. With this approach we identified one or more differentially phosphorylated sites in 76 membrane-associated proteins including a number of defense-related proteins. Our data on phosphorylation indicate a high degree of complexity at the level of post-translational modification as exemplified by the complex modification patterns of respiratory burst oxidase protein D. Furthermore the data also suggest that protein translocation and vesicle traffic are important aspects of early signaling and defense in response to general elicitors. Our study presents the largest quantitative Arabidopsis phosphoproteomics data set to date and provides a new resource that can be used to gain novel insight into plant defense signal transduction and early defense response

    Silencing of the mitogen-activated protein kinase MPK6 compromises disease resistance in Arabidopsis

    No full text
    Here, we use a loss-of-function approach to demonstrate that the Arabidopsis (Arabidopsis thaliana) mitogen-activated protein kinase (MAPK) MPK6 plays a role in resistance to certain pathogens. MPK6-silenced Arabidopsis showed no apparent morphological phenotype or reduced fertility, indicating MPK6 is not required for development. However, resistances to an avirulent strain of Peronospora parasitica and avirulent and virulent strains of Pseudomonas syringae were compromised, suggesting that MPK6 plays a role in both resistance gene–mediated and basal resistance. Furthermore, this result demonstrates that MPK6's function cannot be fully complemented by other endogenous MAPKs. Although MPK6-silenced plants exhibited enhanced disease susceptibility, their ability to develop systemic acquired resistance or induced systemic resistance was unaffected. Expression of the pathogen-inducible gene VEGETATIVE STORAGE PROTEIN1 (VSP1) in MPK6-silenced plants was severalfold lower than in control plants, but the expression of other defense genes was comparable to the level observed in control plants. Taken together, these results provide direct evidence that a specific MAPK positively regulates VSP1 expression and resistance to a primary infection by certain pathogens, whereas systemic resistance and expression of several other defense genes appears to be mediated either by a functionally redundant MAPK(s) or independently from MPK6-dependent resistance
    corecore