28 research outputs found

    MolFind: A Software Package Enabling HPLC/MS-Based Identification of Unknown Chemical Structures

    No full text
    In this paper, we present MolFind, a highly multithreaded pipeline type software package for use as an aid in identifying chemical structures in complex biofluids and mixtures. MolFind is specifically designed for high-performance liquid chromatography/mass spectrometry (HPLC/MS) data inputs typical of metabolomics studies where structure identification is the ultimate goal. MolFind enables compound identification by matching HPLC/MS-based experimental data obtained for an unknown compound with computationally derived HPLC/MS values for candidate compounds downloaded from chemical databases such as PubChem. The downloaded “bins” consist of all compounds matching the monoisotopic molecular weight of the unknown. The computational HPLC/MS values predicted include retention index (RI), ECOM<sub>50</sub> (energy required to fragment 50% of a selected precursor ion), drift time, and collision induced dissociation (CID) spectrum. RI, ECOM<sub>50</sub>, and drift-time models are used for filtering compounds downloaded from PubChem. The remaining candidates are then ranked based on CID spectra matching. Current RI and ECOM<sub>50</sub> models allow for the removal of about 28% of compounds from PubChem bins. Our estimates suggest that this could be improved to as much as 87% with additional chemical structures included in the computational models. Quantitative structure property relationship-based modeling of drift times showed a better correlation with experimentally determined drift times than did Mobcal cross-sectional areas. In 23 of 35 example cases, filtering PubChem bins with RI and ECOM<sub>50</sub> predictive models resulted in improved ranking of the unknown compounds compared to previous studies using CID spectra matching alone. In 19 of 35 examples, the correct candidate was ranked within the top 20 compounds in bins containing an average of 1635 compounds

    MolFind: A Software Package Enabling HPLC/MS-Based Identification of Unknown Chemical Structures

    No full text
    In this paper, we present MolFind, a highly multithreaded pipeline type software package for use as an aid in identifying chemical structures in complex biofluids and mixtures. MolFind is specifically designed for high-performance liquid chromatography/mass spectrometry (HPLC/MS) data inputs typical of metabolomics studies where structure identification is the ultimate goal. MolFind enables compound identification by matching HPLC/MS-based experimental data obtained for an unknown compound with computationally derived HPLC/MS values for candidate compounds downloaded from chemical databases such as PubChem. The downloaded “bins” consist of all compounds matching the monoisotopic molecular weight of the unknown. The computational HPLC/MS values predicted include retention index (RI), ECOM<sub>50</sub> (energy required to fragment 50% of a selected precursor ion), drift time, and collision induced dissociation (CID) spectrum. RI, ECOM<sub>50</sub>, and drift-time models are used for filtering compounds downloaded from PubChem. The remaining candidates are then ranked based on CID spectra matching. Current RI and ECOM<sub>50</sub> models allow for the removal of about 28% of compounds from PubChem bins. Our estimates suggest that this could be improved to as much as 87% with additional chemical structures included in the computational models. Quantitative structure property relationship-based modeling of drift times showed a better correlation with experimentally determined drift times than did Mobcal cross-sectional areas. In 23 of 35 example cases, filtering PubChem bins with RI and ECOM<sub>50</sub> predictive models resulted in improved ranking of the unknown compounds compared to previous studies using CID spectra matching alone. In 19 of 35 examples, the correct candidate was ranked within the top 20 compounds in bins containing an average of 1635 compounds

    MolFind: A Software Package Enabling HPLC/MS-Based Identification of Unknown Chemical Structures

    No full text
    In this paper, we present MolFind, a highly multithreaded pipeline type software package for use as an aid in identifying chemical structures in complex biofluids and mixtures. MolFind is specifically designed for high-performance liquid chromatography/mass spectrometry (HPLC/MS) data inputs typical of metabolomics studies where structure identification is the ultimate goal. MolFind enables compound identification by matching HPLC/MS-based experimental data obtained for an unknown compound with computationally derived HPLC/MS values for candidate compounds downloaded from chemical databases such as PubChem. The downloaded “bins” consist of all compounds matching the monoisotopic molecular weight of the unknown. The computational HPLC/MS values predicted include retention index (RI), ECOM<sub>50</sub> (energy required to fragment 50% of a selected precursor ion), drift time, and collision induced dissociation (CID) spectrum. RI, ECOM<sub>50</sub>, and drift-time models are used for filtering compounds downloaded from PubChem. The remaining candidates are then ranked based on CID spectra matching. Current RI and ECOM<sub>50</sub> models allow for the removal of about 28% of compounds from PubChem bins. Our estimates suggest that this could be improved to as much as 87% with additional chemical structures included in the computational models. Quantitative structure property relationship-based modeling of drift times showed a better correlation with experimentally determined drift times than did Mobcal cross-sectional areas. In 23 of 35 example cases, filtering PubChem bins with RI and ECOM<sub>50</sub> predictive models resulted in improved ranking of the unknown compounds compared to previous studies using CID spectra matching alone. In 19 of 35 examples, the correct candidate was ranked within the top 20 compounds in bins containing an average of 1635 compounds

    Ion Mobility Derived Collision Cross Sections to Support Metabolomics Applications

    Get PDF
    Metabolomics is a rapidly evolving analytical approach in life and health sciences. The structural elucidation of the metabolites of interest remains a major analytical challenge in the metabolomics workflow. Here, we investigate the use of ion mobility as a tool to aid metabolite identification. Ion mobility allows for the measurement of the rotationally averaged collision cross-section (CCS), which gives information about the ionic shape of a molecule in the gas phase. We measured the CCSs of 125 common metabolites using traveling-wave ion mobility-mass spectrometry (TW-IM-MS). CCS measurements were highly reproducible on instruments located in three independent laboratories (RSD < 5% for 99%). We also determined the reproducibility of CCS measurements in various biological matrixes including urine, plasma, platelets, and red blood cells using ultra performance liquid chromatography (UPLC) coupled with TW-IM-MS. The mean RSD was < 2% for 97% of the CCS values, compared to 80% of retention times. Finally, as proof of concept, we used UPLC–TW-IM-MS to compare the cellular metabolome of epithelial and mesenchymal cells, an in vitro model used to study cancer development. Experimentally determined and computationally derived CCS values were used as orthogonal analytical parameters in combination with retention time and accurate mass information to confirm the identity of key metabolites potentially involved in cancer. Thus, our results indicate that adding CCS data to searchable databases and to routine metabolomics workflows will increase the identification confidence compared to traditional analytical approaches
    corecore