158 research outputs found

    Decoding the spermatogonial stem cell niche under physiological and recovery conditions in adult mice and humans

    Get PDF
    The intricate interaction between spermatogonial stem cell (SSC) and testicular niche is essential for maintaining SSC homeostasis; however, this interaction remains largely uncharacterized. In this study, to characterize the underlying signaling pathways and related paracrine factors, we delineated the intercellular interactions between SSC and niche cell in both adult mice and humans under physiological conditions and dissected the niche-derived regulation of SSC maintenance under recovery conditions, thus uncovering the essential role of C-C motif chemokine ligand 24 and insulin-like growth factor binding protein 7 in SSC maintenance. We also established the clinical relevance of specific paracrine factors in human fertility. Collectively, our work on decoding the adult SSC niche serves as a valuable reference for future studies on the aetiology, diagnosis, and treatment of male infertility.</p

    Transient Inhibition of mTORC1 Signaling Ameliorates Irradiation-Induced Liver Damage

    Get PDF
    Recurrent liver cancer after surgery is often treated with radiotherapy, which induces liver damage. It has been documented that activation of the TGF-β and NF-κB signaling pathways plays important roles in irradiation-induced liver pathologies. However, the significance of mTOR signaling remains undefined after irradiation exposure. In the present study, we investigated the effects of inhibiting mTORC1 signaling on irradiated livers. Male C57BL/6J mice were acutely exposed to 8.0 Gy of X-ray total body irradiation and subsequently treated with rapamycin. The effects of rapamycin treatment on irradiated livers were examined at days 1, 3, and 7 after exposure. The results showed that 8.0 Gy of irradiation resulted in hepatocyte edema, hemorrhage, and sinusoidal congestion along with a decrease of ALB expression. Exposure of mice to irradiation significantly activated the mTORC1 signaling pathway determined by pS6 and p-mTOR expression via western blot and immunostaining. Transient inhibition of mTORC1 signaling by rapamycin treatment consistently accelerated liver recovery from irradiation, which was evidenced by decreasing sinusoidal congestion and increasing ALB expression after irradiation. The protective role of rapamycin on irradiated livers might be mediated by decreasing cellular apoptosis and increasing autophagy. These data suggest that transient inhibition of mTORC1 signaling by rapamycin protects livers against irradiation-induced damage

    Estimation of Soil Erosion and Sediment Yield in the Lancang–Mekong River Using the Modified Revised Universal Soil Loss Equation and GIS Techniques

    No full text
    The Lancang&ndash;Mekong River basin, as an important transboundary river in Southeast Asia, is challenged by rapid socio-economic development, especially the construction of hydropower dams. Furthermore, substantial factors, such as terrain, rainfall, soil properties and agricultural activity, affect and are highly susceptible to soil erosion and sediment yield. This study aimed to estimate average annual soil erosion in terms of spatial distribution and sediment deposition by using the revised universal soil loss equation (RUSLE) and GIS techniques. This study also applied remote sensing and available data sources for soil erosion analysis. Annual soil erosion in most parts of the study area range from 700 to 10,000 t/km2/y with a mean value of 5350 t/km2/y. Approximately 45% of the total area undergoes moderate erosion. Moreover, the assessments of sediment deposition and erosion using the modified RUSLE and the GIS techniques indicate high sediment erosion along the flow direction of the mainstream, from the upper Mekong River to the Mekong Delta. The northern part of the upper Mekong River and the central and southern parts of the lower Mekong River are the most vulnerable to the increase in soil erosion rates, indicating sediment deposition

    Higher-order aberrations and visual quality after incision lenticule extraction surgery with intraoperative angle kappa adjustments between small and large kappa patients: A 2-year follow-up

    No full text
    Purpose: To evaluate the postoperative visual outcomes, that is, corneal higher-order aberrations (HOAs) and visual quality, of patients with an angle kappa greater than 0.30 mm who underwent angle kappa adjustment during small-incision lenticule extraction (SMILE) 2 years after surgery compared to eyes with an angle kappa less than 0.30 mm. Methods: This was a retrospective study and included 12 patients from October 2019 to December 2019 who underwent the SMILE procedure for correction of myopia and myopic astigmatism and had one eye with a large kappa angle and another eye with a small kappa angle. Twenty-four months after surgery, an optical quality analysis system (OQAS II; Visiometrics, Terrassa, Spain) was used to measure the modulation transfer function cutoff frequency (MTFcutoff), Strehl2D ratio, and objective scatter index (OSI). HOAs were measured with a Tracey iTrace Visual Function Analyzer (Tracey version 6.1.0; Tracey Technologies, Houston, TX, USA). Assessment of subjective visual quality was achieved using the quality of vision (QOV) questionnaire. Results: At 24 months postoperatively, the mean spherical equivalent (SE) refraction was − 0.32 ± 0.40 and − 0.31 ± 0.35 in the S-kappa group (kappa 0.05). The mean OSI was 0.73 ± 0.32 and 0.81 ± 0.47, respectively (P > 0.05). There was no significant difference in MTFcutoff and Strehl2D ratio between the two groups (P > 0.05). Total HOA, coma, spherical, trefoil, and secondary astigmatism were not significantly different (P > 0.05) between the two groups. Conclusion: Adjustment of angle kappa during SMILE helps reduce the decentration, results in less HOAs, and promotes visual quality. It provides a reliable method to optimize the treatment concentration in SMILE

    Expression of a Cytochrome P450 Gene from Bermuda Grass <i>Cynodon dactylon</i> in Soybean Confers Tolerance to Multiple Herbicides

    No full text
    Bermuda grass (Cynodon dactylon) is notoriously difficult to control with some commonly used herbicides. We cloned a cytochrome P450 gene from Bermuda grass, named P450-N-Z1, which was found to confer tolerance to multiple herbicides in transgenic Arabidopsis. These herbicides include: (1) acetolactate synthase (ALS) inhibitor herbicides nicosulfuron and penoxsulam; (2) p-hydroxyphenylpyruvate dioxygenase (HPPD)-inhibiting herbicide mesotrione; (3) synthetic auxin herbicide dicamba; (4) photosynthesis inhibitor bentazon. We further generated transgenic soybean plants expressing P450-N-Z1, and found that these transgenic soybean plants gained robust tolerance to nicosulfuron, flazasulfuron, and 2,4-dichlorophenoxyacetic acid (2,4-D) in greenhouse assays. A field trial demonstrated that transgenic soybean is tolerant to flazasulfuron and 2,4-D at 4-fold and 2-fold the recommended rates, respectively. Furthermore, we also demonstrated that flazasulfuron and dicamba are much more rapidly degraded in vivo in the transgenic soybean than in non-transgenic soybean. Therefore, P450-N-Z1 may be utilized for engineering transgenic crops for herbicide tolerance

    U-SeqNet: learning spatiotemporal mapping relationships for multimodal multitemporal cloud removal

    No full text
    ABSTRACTOptical remotely sensed time series data have various key applications in Earth surface dynamics. However, cloud cover significantly hampers data analysis and interpretation. Despite synthetic aperture radar (SAR)-to-optical image translation techniques emerging as a promising solution, their effectiveness is diminished by their inability to adequately account for the intertwined nature of temporal and spatial dimensions. This study introduces U-SeqNet, an innovative model that integrates U-Net and Sequence-to-Sequence (Seq2Seq) architectures. Leveraging a pioneering spatiotemporal teacher forcing strategy, U-SeqNet excels in adapting and reconstructing data, capitalizing on available cloud-free observations to improve accuracy. Rigorous assessments through No Reference and Full Reference Image Quality Assessments (NR – IQA and FR – IQA) affirm U-SeqNet’s exceptional performance, marked by a Natural Image Quality Evaluator (NIQE) score of 5.85 and Mean Absolute Error (MAE) of 0.039. These results underline U-SeqNet’s exceptional capabilities in image reconstruction and its potential to improve remote sensing analysis by enabling more accurate and efficient multimodal and multitemporal cloud removal techniques

    Rhythmic light flicker rescues hippocampal low gamma and protects ischemic neurons by enhancing presynaptic plasticity

    No full text
    The complex relationship between specific hippocampal oscillation frequency deficit and cognitive dysfunction in the ischemic brain is unclear. Here, using a mouse two-vessel occlusion (2VO) cerebral ischemia model, we show that visual stimulation with a 40 Hz light flicker drove hippocampal CA1 slow gamma and restored 2VO-induced reduction in CA1 slow gamma power and theta-low gamma phase-amplitude coupling, but not those of the high gamma. Low gamma frequency lights at 30 Hz, 40 Hz, and 50 Hz, but not 10 Hz, 80 Hz, and arrhythmic frequency light, were protective against degenerating CA1 neurons after 2VO, demonstrating the importance of slow gamma in cognitive functions after cerebral ischemia. Mechanistically, 40 Hz light flicker enhanced RGS12-regulated CA3-CA1 presynaptic N-type calcium channel-dependent short-term synaptic plasticity and associated postsynaptic long term potentiation (LTP) after 2VO. These results support a causal relationship between CA1 slow gamma and cognitive dysfunctions in the ischemic brain

    Identification of quiescent FOXC2+ spermatogonial stem cells in adult mammals

    Get PDF
    In adult mammals, spermatogenesis embodies the complex developmental process from spermatogonial stem cells (SSCs) to spermatozoa. At the top of this developmental hierarchy lie a series of SSC subpopulations. Their individual identities as well as the relationships with each other, however, remain largely elusive. Using single-cell analysis and lineage tracing, we discovered both in mice and humans the quiescent adult SSC subpopulation marked specifically by forkhead box protein C2 (FOXC2). All spermatogenic progenies can be derived from FOXC2+ SSCs and the ablation of FOXC2+ SSCs led to the depletion of the undifferentiated spermatogonia pool. During germline regeneration, FOXC2+ SSCs were activated and able to completely restore the process. Germ cell-specific Foxc2 knockout resulted in an accelerated exhaustion of SSCs and eventually led to male infertility. Furthermore, FOXC2 prompts the expressions of negative regulators of cell cycle thereby ensures the SSCs reside in quiescence. Thus, this work proposes that the quiescent FOXC2+ SSCs are essential for maintaining the homeostasis and regeneration of spermatogenesis in adult mammals
    • …
    corecore