3 research outputs found

    The Synergy of Chicken Anemia Virus and Gyrovirus Homsa 1 in Chickens

    No full text
    Chicken anemia virus (CAV) and Gyrovirus homsa 1 (GyH1) are members of the Gyrovirus genus. The two viruses cause similar clinical manifestations in chickens, aplastic anemia and immunosuppression. Our previous investigation displays that CAV and GyH1 often co-infect chickens. However, whether they have synergistic pathogenicity in chickens remains elusive. Here, we established a co-infection model of CAV and GyH1 in specific pathogen-free (SPF) chickens to explore the synergy between CAV and GyH1. We discovered that CAV and GyH1 significantly inhibited weight gain, increased mortality, and hindered erythropoiesis in co-infected chickens. Co-infected chickens exhibited severe immune organ atrophy and lymphocyte exhaustion. The proventriculus and gizzard had severe hemorrhagic necrosis and inflammation. We also discovered that the viral loads and shedding levels were higher and lasted longer in CAV and GyH1 co-infected chickens than in mono-infected chickens. Our results demonstrate that CAV and GyH1 synergistically promote immunosuppression, pathogenicity, and viral replication in co-infected chicken, highlighting the interaction between CAV and GyH1 in the disease process and increasing potential health risk in the poultry breeding industry, and needs further attention

    Molecular characteristics and pathogenicity of a novel chicken astrovirus variant

    No full text
    Abstract It is well-established that the genetic diversity, regional prevalence, and broad host range of astroviruses significantly impact the poultry industry. In July 2022, a small-scale commercial broiler farm in China reported cases of growth retardation and a 3% mortality rate. From chickens displaying proventriculitis and pancreatitis, three chicken astroviruses (CAstV) isolates were obtained and named SDAU2022-1-3. Complete genomic sequencing and analysis revealed the unique characteristics of these isolates from known CAstV strains in ORF1a, ORF1b, and ORF2 genes, characterized by an unusually high variability. Analysis of amino acid mutations in ORF1a, ORF1b, and ORF2 indicated that the accumulation of these mutations played a pivotal role in the emergence of the variant strain. Inoculation experiments demonstrated that affected chickens exhibited liver and kidney enlargement, localized proventricular hemorrhage, and a dark reddish-brown appearance in about two-thirds of the pancreas. Histopathological examination unveiled hepatic lymphocytic infiltration, renal tubular epithelial cell swelling, along with lymphocytic proventriculitis and pancreatitis. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis indicated viremia and viral shedding at 3 days post-infection (dpi). The proventriculus displayed the highest viral loads, followed by the liver, kidney, duodenum, and pancreas. Liver parameters (AST and ALT) and kidney parameters (UA and UN) demonstrated mild damage consistent with earlier findings. While the possibility of new mutations in the ORF2 gene of CAstV causing proventriculitis and pancreatitis warrants further investigation, these findings deepen our comprehension of CAstV’s pathogenicity in chickens. Additionally, they serve as valuable references for subsequent research endeavors
    corecore