75 research outputs found

    Apogeotropic posterior semicircular canal benign paroxysmal positional vertigo: some clinical and therapeutic considerations

    Get PDF
    We lately reported the cases of patients complaining positional vertigo whose nystagmic pattern was that of a peripheral torsional vertical positional down beating nystagmus originating from a lithiasis of the non-ampullary arm of the posterior semicircular canal (PSC). We considered this particular pathological picture the apogeotropic variant of PSC benign paroxysmal positional vertigo (BPPV). Since the description of the pilot cases we observed more than 150 patients showing the same clinical sign and course of symptoms. In this paper we describe, in detail, both nystagmus of apogeotropic PSC BPPV (A-PSC BPPV) and symptoms reported by patients trying to give a reasonable explanation for these clinical features. Moreover we developed two specific physical therapies directed to cure A-PSC BPPV. Preliminary results of these techniques are related

    Cross-contamination quantification in powders for additive manufacturing: A study on Ti-6Al-4V and maraging steel

    Get PDF
    Metal additive manufacturing is now taking the lead over traditional manufacturing techniques in applications such as aerospace and biomedicine, which are characterized by low production volumes and high levels of customization. While fulfilling these requirements is the strength of metal additive manufacturing, respecting the tight tolerances typical of the mentioned applications is a harder task to accomplish. Powder bed fusion (PBF) is a class of additive manufacturing in which layers of metal powder are fused on top of each other by a high-energy beam (laser or electron beam) according to a computer-aided design (CAD) model. The quality of raw powders for PBF affects the mechanical properties of additively manufactured parts strongly, and therefore it is crucial to avoid the presence of any source of contamination, particularly cross-contamination. In this study, the identification and quantification of cross-contamination in powders of Ti-6Al-4V and maraging steel was performed using scanning electron microscopy (SEM) and energy-dispersive spectroscopy (EDS) techniques. Experimental results showed an overall good reliability of the developed method, opening the way for applications in machine learning environments

    Luminescence and Structural Characterization of Gd2O2S Scintillators Doped with Tb3+, Ce3+, Pr3+ and F for Imaging Applications

    Get PDF
    none14siRadiodiagnostic technologies are powerful tools for preventing diseases and monitoring the condition of patients. Medicine and sectors such as industry and research all use this inspection methodology. This field demands innovative and more sophisticated systems and materials for improving resolution and sensitivity, leading to a faster, reliable, and safe diagnosis. In this study, a large characterization of gadolinium oxysulfide (Gd2O2S) scintillator screens for imaging applications has been carried out. Seven scintillator samples were doped with praseodymium (Pr3+), terbium (Tb3+) activators and co-doped with praseodymium, cerium, and fluorine (Gd2O2S:Pr,Ce,F). The sample screens were prepared in the laboratory in the form of high packing density screens, following the methodology used in screen sample preparation in infrared spectroscopy and luminescence. Parameters such as quantum detection efficiency (QDE), energy absorption efficiency (EAE), and absolute luminescence efficiency (ALE) were evaluated. In parallel, a structural characterization was performed, via XRD and SEM analysis, for quality control purposes as well as for correlation with optical properties. Spatial resolution properties were experimentally evaluated via the Modulation Transfer Function. Results were compared with published data about Gd2O2S:Pr,Ce,F screens produced with a standard method of a sedimentation technique. In particular, the ALE rose with the X-ray tube voltage up to 100 kVp, while among the different dopants, Gd2O2S:Pr exhibited the highest ALE value. When comparing screens with different thicknesses, a linear trend for the ALE value was not observed; the highest ALE value was measured for the 0.57 mm thick Gd2O2S:Pr,Ce,F sample, while the best MTF values were found in the thinner Gd2O2S:Pr,Ce,F screen with 0.38 mm thickness.De Martinis, Alessia; Montalto, Luigi; Scalise, Lorenzo; Rinaldi, Daniele; Mengucci, Paolo; Michail, Christos; Fountos, George; Martini, Nicki; Koukou, Vaia; Valais, Ioannis; Bakas, Athanasios; Fountzoula, Christine; Kandarakis, Ioannis; David, StratosDe Martinis, Alessia; Montalto, Luigi; Scalise, Lorenzo; Rinaldi, Daniele; Mengucci, Paolo; Michail, Christos; Fountos, George; Martini, Nicki; Koukou, Vaia; Valais, Ioannis; Bakas, Athanasios; Fountzoula, Christine; Kandarakis, Ioannis; David, Strato

    Precipitation of metastable phases in a rapidly quenched Al-6wt.% Cu alloy

    No full text

    DSC investigation of natural ageing in high-copper AlCuMg alloys

    No full text

    Calorimetric evaluation of the microstructure of Al-Cu-Li-Mg 2091 alloy

    No full text

    Influence of a Surface Finishing Method on Light Collection Behaviour of PWO Scintillator Crystals

    No full text
    In the field of scintillators, high scintillation and light production performance require high-quality crystals. Although the composition and structure of crystals are fundamental in this direction, their ultimate optical performance is strongly dependent on the surface finishing treatment. This paper compares two surface finishing methods in terms of the final structural condition of the surface and the relative light yield performances. The first polishing method is the conventional “Mechanical Diamond Polishing„ (MDP) technique. The second polishing technique is a method applied in the electronics industry which is envisaged for finishing the surface treatment of scintillator crystals. This method, named “Chemical Mechanical Polishing„ (CMP), is efficient in terms of the cost and material removal rate and is expected to produce low perturbed surface layers, with a possible improvement of the internal reflectivity and, in turn, the light collection efficiency. The two methods have been applied to a lead tungstate PbWO4 (PWO) single crystal due to the wide diffusion of this material in high energy physics (CERN, PANDA project) and diagnostic medical applications. The light yield (LY) values of both the MDP and CMP treated crystals were measured by using the facilities at CERN while their surface structure was investigated by Scanning Electron Microscopy (SEM) and Grazing Incidence X-ray Diffraction (GID). We present here the corresponding optical results and their relationship with the processing conditions and subsurface structure

    Microstructural Characterization of Thin Films Obtained by Laser Irradiation

    No full text
    Thin films obtained by direct pulsed excimer laser irradiation and by laser reactive ablation were characterized by scanning electron microscopy, cross sectional transmission electron microscopy and grazing angle X-ray diffraction. The results obtained were interpreted in function of the deposition parameters such as substrate temperature, pressure of the ambient atmosphere, number of laser pulses and laser fluence
    corecore