70 research outputs found

    A novel fault location method for a cross-bonded hv cable system based on sheath current monitoring

    Get PDF
    In order to improve the practice in the operation and maintenance of high voltage (HV) cables, this paper proposes a fault location method based on the monitoring of cable sheath currents for use in cross-bonded HV cable systems. This method first analyzes the power–frequency component of the sheath current, which can be acquired at cable terminals and cable link boxes, using a Fast Fourier Transform (FFT). The cable segment where a fault occurs can be localized by the phase difference between the sheath currents at the two ends of the cable segment, because current would flow in the opposite direction towards the two ends of the cable segment with fault. Conversely, in other healthy cable segments of the same circuit, sheath currents would flow in the same direction. The exact fault position can then be located via electromagnetic time reversal (EMTR) analysis of the fault transients of the sheath current. The sheath currents have been simulated and analyzed by assuming a single-phase short-circuit fault to occur in every cable segment of a selected cross-bonded high voltage cable circuit. The sheath current monitoring system has been implemented in a 110 kV cable circuit in China. Results indicate that the proposed method is feasible and effective in location of HV cable short circuit faults

    Neutrophil extracellular traps mediate deep vein thrombosis: from mechanism to therapy

    Get PDF
    Deep venous thrombosis (DVT) is a part of venous thromboembolism (VTE) that clinically manifests as swelling and pain in the lower limbs. The most serious clinical complication of DVT is pulmonary embolism (PE), which has a high mortality rate. To date, its underlying mechanisms are not fully understood, and patients usually present with clinical symptoms only after the formation of the thrombus. Thus, it is essential to understand the underlying mechanisms of deep vein thrombosis for an early diagnosis and treatment of DVT. In recent years, many studies have concluded that Neutrophil Extracellular Traps (NETs) are closely associated with DVT. These are released by neutrophils and, in addition to trapping pathogens, can mediate the formation of deep vein thrombi, thereby blocking blood vessels and leading to the development of disease. Therefore, this paper describes the occurrence and development of NETs and discusses the mechanism of action of NETs on deep vein thrombosis. It aims to provide a direction for improved diagnosis and treatment of deep vein thrombosis in the near future

    Phased Treatment Strategies for Cerebral Ischemia Based on Glutamate Receptors

    Get PDF
    Extracellular glutamate accumulation following cerebral ischemia leads to overactivation of glutamate receptors, thereby resulting in intracellular Ca2+ overload and excitotoxic neuronal injury. Multiple attempts have been made to counteract such effects by reducing glutamate receptor function, but none have been successful. In this minireview, we present the available evidence regarding the role of all types of ionotropic and metabotropic glutamate receptors in cerebral ischemia and propose phased treatment strategies based on glutamate receptors in both the acute and post-acute phases of cerebral ischemia, which may help realize the clinical application of glutamate receptor antagonists

    Psychometric properties of the Depression Stigma Scale (DSS) in Chinese cancer patients:a cross-sectional study

    Get PDF
    Objectives The Depression Stigma Scale (DSS) is commonly used to assess depression stigma in the general population and in people with depression. The DSS includes two 9-item subscales assumed to measure personal depression stigma (ie, personal perceptions of depression) and perceived depression stigma (ie, perceptions of how others perceive depression). The aim of the present study was to examine its psychometric properties in terms of validity and reliability in Chinese cancer patients. Design A cross-sectional study design. Participants and settings This study focused on 301 Chinese cancer patients recruited from two hospitals in Xian, China. Methods Exploratory factor analysis (EFA) and confirmatory factor analysis (CFA) were used to assess the factor structure. Internal consistency was assessed using Cronbachs alpha. To examine concurrent validity, symptoms of depression were used as the criterion. Results For each subscale of the DSS (ie, personal and perceived depression stigma), the EFA and CFA confirmed a two-factor structure: weak-not-sick (ie, perceiving that depression is not a real illness, but rather a sign of weakness) and discrimination (ie, perceiving that depressed people are discriminated against). The Cronbachs alphas were adequate, ranging from 0.70 to 0.80. Symptoms of depression were positively but weakly correlated to personal and perceived depression stigma. Conclusions The DSS appeared to show satisfactory psychometric properties in our sample of cancer patients. Both personal depression stigma and perceived depression stigma subscales consisted of two underlying aspects

    Picosecond ultrasonics for elasticity-based imaging and characterization of biological cells

    Get PDF
    © 2020 Author(s). Characterization of the elasticity of biological cells is growing as a new way to gain insight into cell biology. Cell mechanics are related to most aspects of cellular behavior, and applications in research and medicine are broad. Current methods are often limited since they require physical contact or lack resolution. From the methods available for the characterization of elasticity, those relying on high frequency ultrasound (phonons) are the most promising because they offer label-free, high (even super-optical) resolution and compatibility with conventional optical microscopes. In this Perspective contribution, we review the state of the art of picosecond ultrasonics for cell imaging and characterization, particularly for Brillouin scattering-based methods, offering an opinion for the challenges faced by the technology. The challenges are separated into biocompatibility, acquisition speed, resolution, and data interpretation and are discussed in detail along with new results

    Label-free Brillouin endo-microscopy for the quantitative 3D imaging of sub-micrometre biology

    Get PDF
    This report presents an optical fibre-based endo-microscopic imaging tool that simultaneously measures the topographic profile and 3D viscoelastic properties of biological specimens through the phenomenon of time-resolved Brillouin scattering. This uses the intrinsic viscoelasticity of the specimen as a contrast mechanism without fluorescent tags or photoacoustic contrast mechanisms. We demonstrate 2 µm lateral resolution and 320 nm axial resolution for the 3D imaging of biological cells and Caenorhabditis elegans larvae. This has enabled the first ever 3D stiffness imaging and characterisation of the C. elegans larva cuticle in-situ. A label-free, subcellular resolution, and endoscopic compatible technique that reveals structural biologically-relevant material properties of tissue could pave the way toward in-vivo elasticity-based diagnostics down to the single cell level

    Search for light dark matter from atmosphere in PandaX-4T

    Full text link
    We report a search for light dark matter produced through the cascading decay of η\eta mesons, which are created as a result of inelastic collisions between cosmic rays and Earth's atmosphere. We introduce a new and general framework, publicly accessible, designed to address boosted dark matter specifically, with which a full and dedicated simulation including both elastic and quasi-elastic processes of Earth attenuation effect on the dark matter particles arriving at the detector is performed. In the PandaX-4T commissioning data of 0.63 tonne⋅\cdotyear exposure, no significant excess over background is observed. The first constraints on the interaction between light dark matter generated in the atmosphere and nucleus through a light scalar mediator are obtained. The lowest excluded cross-section is set at 5.9×10−37cm25.9 \times 10^{-37}{\rm cm^2} for dark matter mass of 0.10.1 MeV/c2/c^2 and mediator mass of 300 MeV/c2/c^2. The lowest upper limit of η\eta to dark matter decay branching ratio is 1.6×10−71.6 \times 10^{-7}

    A Small RO and MCDI Coupled Seawater Desalination Plant and Its Performance Simulation Analysis and Optimization

    No full text
    To solve the problems of high specific energy consumption and excessive harmful ions in the water production of a small reverse osmosis (RO) plant, a desalination system coupling RO and membrane capacitive deionization (MCDI) is proposed in this study. Aiming at producing two cubic meters per day of fresh water with a salt concentration of less than 280 mg L−1, parameter matching optimization was carried out on two desalination system schemes of one-stage two-section RO and one-stage three-section RO coupled with MCDI. The results were compared with the parameter matching optimization results of the one-stage one-section RO and the one-stage two-section pure RO desalination system. The results show that compared with the pure RO desalination mode, the seawater desalination mode coupled with RO and MCDI reduces the specific energy consumption under the same effluent salt concentration. Moreover, it decreases the feed water pressure in front of the RO membrane, which can reduce the standard of high-pressure pump in a small seawater desalination plant. The energy consumption of the one-stage three-section RO and MCDI coupling system is lower than that of the one- stage two-section RO and MCDI coupling system, and the feed water pressure is also lower
    • …
    corecore