22 research outputs found

    Multiscale core-periphery structure in a global liner shipping network

    Get PDF
    Maritime transport accounts for a majority of trades in volume, of which 70% in value is carried by container ships that transit regular routes on fixed schedules in the ocean. In the present paper, we analyse a data set of global liner shipping as a network of ports. In particular, we construct the network of the ports as the one-mode projection of a bipartite network composed of ports and ship routes. Like other transportation networks, global liner shipping networks may have core-periphery structure, where a core and a periphery are groups of densely and sparsely interconnected nodes, respectively. Core-periphery structure may have practical implications for understanding the robustness, efficiency and uneven development of international transportation systems. We develop an algorithm to detect core-periphery pairs in a network, which allows one to find core and peripheral nodes on different scales and uses a configuration model that accounts for the fact that the network is obtained by the one-mode projection of a bipartite network. We also found that most ports are core (as opposed to peripheral) ports and that ports in some countries in Europe, America and Asia belong to a global core-periphery pair across different scales, whereas ports in other countries do not.Comment: 22 pages, 10 figures and 1 tabl

    Gate-tunable Topological Valley Transport in Bilayer Graphene

    Get PDF
    Valley pseudospin, the quantum degree of freedom characterizing the degenerate valleys in energy bands, is a distinct feature of two-dimensional Dirac materials. Similar to spin, the valley pseudospin is spanned by a time reversal pair of states, though the two valley pseudospin states transform to each other under spatial inversion. The breaking of inversion symmetry induces various valley-contrasted physical properties; for instance, valley-dependent topological transport is of both scientific and technological interests. Bilayer graphene (BLG) is a unique system whose intrinsic inversion symmetry can be controllably broken by a perpendicular electric field, offering a rare possibility for continuously tunable valley-topological transport. Here, we used a perpendicular gate electric field to break the inversion symmetry in BLG, and a giant nonlocal response was observed as a result of the topological transport of the valley pseudospin. We further showed that the valley transport is fully tunable by external gates, and that the nonlocal signal persists up to room temperature and over long distances. These observations challenge contemporary understanding of topological transport in a gapped system, and the robust topological transport may lead to future valleytronic applications

    Robust Self-Learning PID Control of an Aircraft Anti-Skid Braking System

    No full text
    In order to deal with strong nonlinearity and external interference in the braking process, this paper proposes a robust self-learning PID algorithm based on particle swarm optimization, which does not depend on a precise mathematical model of the controlled object. The self-learning function is used to adapt to the diversity of the runway road surface friction, the particle swarm algorithm is used to optimize the rate of self-learning, and robust control is used to deal with the modeling uncertainty and external disturbance of the system. The convergence of the control strategy is proved by theoretical analysis and simulation experiments. The superiority and accuracy of the method are verified by NASA ground test results. The simulation results shows that the adverse effect of the external disturbance is suppressed, and the ideal trajectory is tracked

    PSO Optimized Active Disturbance Rejection Control for Aircraft Anti-Skid Braking System

    No full text
    A high-quality and secure touchdown run for an aircraft is essential for economic, operational, and strategic reasons. The shortest viable touchdown run without any skidding requires variable braking pressure to manage the friction between the road surface and braking tire at all times. Therefore, the manipulation and regulation of the anti-skid braking system (ABS) should be able to handle steady nonlinearity and undetectable disturbances and to regulate the wheel slip ratio to make sure that the braking system operates securely. This work proposes an active disturbance rejection control technique for the anti-skid braking system. The control law ensures action that is bounded and manageable, and the manipulating algorithm can ensure that the closed-loop machine works around the height factor of the secure area of the friction curve, thereby improving overall braking performance and safety. The stability of the proposed algorithm is proven primarily by means of Lyapunov-based strategies, and its effectiveness is assessed by means of simulations on a semi-physical aircraft brake simulation platform

    Design of an NSMCR Based Controller for All-Electric Aircraft Anti-Skid Braking System

    No full text
    In this paper, a relative threshold event-triggered based novel complementary sliding mode control (NSMCR) algorithm of all-electric aircraft (AEA) anti-skid braking system (ABS) is proposed to guarantee the braking stability and tracking precision of reference wheel slip control. First, a model of the braking system is established in strict-feedback form. Then a virtual controller with a nonlinear control algorithm is proposed to address the problem of constraint control regarding wheel slip rate with asymptotical stability. Next, a novel approaching law-based complementary sliding mode controller is developed to keep track of braking pressure. Moreover, the robust adaptive law is designed to estimate the uncertainties of the braking systems online to alleviate the chattering problem of the braking pressure controller. Additionally, to reduce the network communication and actuator wear of AEA-ABS, a relative threshold event trigger mechanism is proposed to transmit the output of NSMC in demand. The simulation results under various algorithms regarding three types of runway indicate that the proposed algorithms can improve the performance of braking control. In addition, the hardware-in-the-loop (HIL) experimental results prove that the proposed methods are practical for real-time applications

    Design of an NSMCR Based Controller for All-Electric Aircraft Anti-Skid Braking System

    No full text
    In this paper, a relative threshold event-triggered based novel complementary sliding mode control (NSMCR) algorithm of all-electric aircraft (AEA) anti-skid braking system (ABS) is proposed to guarantee the braking stability and tracking precision of reference wheel slip control. First, a model of the braking system is established in strict-feedback form. Then a virtual controller with a nonlinear control algorithm is proposed to address the problem of constraint control regarding wheel slip rate with asymptotical stability. Next, a novel approaching law-based complementary sliding mode controller is developed to keep track of braking pressure. Moreover, the robust adaptive law is designed to estimate the uncertainties of the braking systems online to alleviate the chattering problem of the braking pressure controller. Additionally, to reduce the network communication and actuator wear of AEA-ABS, a relative threshold event trigger mechanism is proposed to transmit the output of NSMC in demand. The simulation results under various algorithms regarding three types of runway indicate that the proposed algorithms can improve the performance of braking control. In addition, the hardware-in-the-loop (HIL) experimental results prove that the proposed methods are practical for real-time applications

    Defect Detection of Pipeline Inner Surface Based on Coaxial Digital Image Correlation with Hypercentric Lens

    No full text
    A coaxial dual-camera digital image correlation system using a hypercentric lens was proposed to determine the defect position in the inner wall of a pipeline under loads. Compared with the traditional dual-camera system, this system ensures that both cameras can capture a 360-degree panoramic image in the same position. Herein, the imaging principle of the system was introduced in detail. In addition, the effectiveness and accuracy of the proposed method were verified through verification and application experiments

    Consumers’ Willingness to Pay for the Solar Photovoltaic System in the Post-Subsidy Era: A Comparative Analysis under an Urban-Rural Divide

    No full text
    Concerns about the environment and renewable energy are growing. Improving the perception of renewable energy in urban and rural households is required to promote green development and to learn about consumer preferences for renewable energy based on the gradual reduction in financial subsidies for photovoltaic (PV) power generation. This paper aims to estimate the willingness of consumers to pay for a Household PV system and explores the factors that affect consumers’ product selection, which is conducive to optimizing Household PV products and policies and is important for achieving the carbon peaking and carbon neutrality goals. Using a discrete choice model, this paper surveyed 765 urban and rural residents without installing Household PV systems in Tianjin, China. Subsequently, the respondents’ attribute preferences and willingness to pay (WTP) for a Household PV system were analyzed using a logit regression analysis model. The influence of respondents’ socio-economic characteristics on WTP was analyzed. The empirical results showed that (1) price significantly impacts consumers’ PV adoption behaviors and consumers tend to choose cheaper PV products; (2) consumers are more willing to pay for the after-sales service (3959 USD/level) and traceable information (2176 USD/level), indicating their preference for these two attributes when considering options; (3) socio-economic variables, including gender and the number of minor children (i.e., children under the age of 18) at home, significantly impact consumers’ PV adoption behaviors. Males and consumers without minor children at home will pay more attention when selecting the products. Our research findings will provide valuable insights into policy making and the wide-ranging use of Household PV systems

    The association between glaucoma and all-cause mortality in middle-aged and elderly Chinese people: results from the China Health and Retirement Longitudinal Study

    No full text
    OBJECTIVES This population-based, prospective cohort study investigated the association between glaucoma and mortality in older adults. METHODS Participants aged 45 years or older at baseline (47.9% male) were enrolled in 2011 for the China Health and Retirement Longitudinal Study (CHARLS). All-cause mortality was observed during 7 years of follow-up. The baseline data were collected in the 2011 CHARLS, and participants were followed up for 7 years (until 2018). The risk of all-cause mortality was investigated using Cox proportional-hazards regression with age as the time scale, adjusting for significant risk factors and comorbid conditions. RESULTS Among the 14,803 participants included, the risk of all-cause death was significantly higher among people with glaucoma than among those without glaucoma, after adjustment for other confounders (hazard ratio [HR], 1.46; 95% confidence interval [CI], 1.04 to 2.03). In a subgroup analysis based on the mean age of death, among those who were 75 years and older (n=1,231), the risk of all-cause death was significantly higher in patients with glaucoma than in those without glaucoma (HR, 1.89; 95% CI, 1.24 to 1.89). CONCLUSIONS Participants with glaucoma had a higher risk of all-cause mortality, especially those aged 75 years and above. Our findings revealed potential mechanisms underlying an association between glaucoma and all-cause mortality. They also highlighted the importance of glaucoma management to prevent premature death in middle-aged and older adults
    corecore