3 research outputs found

    Pseudorabies gD protein protects mice and piglets against lethal doses of pseudorabies virus

    Get PDF
    IntroductionPseudorabies (PR) is a highly contagious viral disease caused by the pseudorabies virus (PRV), which can cause disease in a wide range of domestic and wild animals. Studies have shown that new mutant strains have emerged in pig farms in many regions and that commercial inactivated and live attenuated vaccines are becoming less effective at protecting pigs.MethodsPorcine pseudorabies glycoprotein D (gD) gene (GenBank: QEY95774.1) with hexa-His tag to the C terminus for further purification processes was cloned into the lentiviral expression plasmid pLV-CMV-eGFP by restriction enzyme, the resulting plasmid was designated as pLV-CMV-gD. HEK-293T cells with robust and stable expression of recombinant gD protein was established by infection with recombinant lentivirus vector pLV-CMV-gD. We expressed porcine pseudorabies virus gD protein using HEK-293T cells.ResultsWe describe in this study that individual gD proteins produced by a mammalian cell expression system are well immunogenic and stimulate high levels of PRV-specific and neutralizing antibodies in mice and piglets. All mice and piglets survived lethal doses of PRV, significantly reducing the amount of PRV virus in piglets’ lymph nodes, lungs, spleen, and other tissues. It also significantly reduced the time cycle and amount of viral excretion from piglets to the environment through the nasal and anal cavities.DiscussionThe results suggest that PRV gD protein is expected to be a potential candidate for the preparation of genetically engineered PR vaccines for the prevention of PRV infection and the control of PR epidemics

    The Role of Autophagy and Autophagy Receptor NDP52 in Microbial Infections

    No full text
    Autophagy is a general protective mechanism for maintaining homeostasis in eukaryotic cells, regulating cellular metabolism, and promoting cell survival by degrading and recycling cellular components under stress conditions. The degradation pathway that is mediated by autophagy receptors is called selective autophagy, also named as xenophagy. Autophagy receptor NDP52 acts as a ‘bridge’ between autophagy and the ubiquitin-proteasome system, and it also plays an important role in the process of selective autophagy. Pathogenic microbial infections cause various diseases in both humans and animals, posing a great threat to public health. Increasing evidence has revealed that autophagy and autophagy receptors are involved in the life cycle of pathogenic microbial infections. The interaction between autophagy receptor and pathogenic microorganism not only affects the replication of these microorganisms in the host cell, but it also affects the host’s immune system. This review aims to discuss the effects of autophagy on pathogenic microbial infection and replication, and summarizes the mechanisms by which autophagy receptors interact with microorganisms. While considering the role of autophagy receptors in microbial infection, NDP52 might be a potential target for developing effective therapies to treat pathogenic microbial infections

    Insight into the current Toxoplasma gondii DNA vaccine: a review article

    No full text
    Introduction Toxoplasma gondii (T.gondii) is a widespread protozoan with significant economic losses and public health importance. But so far, the protective effect of reported DNA-based vaccines fluctuates widely, and no study has demonstrated complete protection. Areas covered This review provides an inclusive summary of T. gondii DNA vaccine antigens, adjuvants, and some other parameters. A total of 140 articles from 2000 to 2021 were collected from five databases. By contrasting the outcomes of acute and chronic challenges, we aimed to investigate and identify viable immunological strategies for optimum protection. Furthermore, we evaluated and discussed the impact of several parameters on challenge outcomes in the hopes of developing some recommendations to assist better future horizontal comparisons among research. Expert opinion In the coming five years of research, the exploration of vaccine cocktails combining invasion antigens and metabolic antigens with genetic adjuvants or novel DNA delivery methods may offer us desirable protection against this multiple stage of life parasite. In addition to finding a better immune strategy, developing better in silico prediction methods, solving problems posed by variables in practical applications, and gaining a more profound knowledge of T.gondii-host molecular interaction is also crucial towards a successful vaccine
    corecore