977 research outputs found
ns-3 Implementation of the 3GPP MIMO Channel Model for Frequency Spectrum above 6 GHz
Communications at mmWave frequencies will be a key enabler of the next
generation of cellular networks, due to the multi-Gbps rate that can be
achieved. However, there are still several problems that must be solved before
this technology can be widely adopted, primarily associated with the interplay
between the variability of mmWave links and the complexity of mobile networks.
An end-to-end network simulator represents a great tool to assess the
performance of any proposed solution to meet the stringent 5G requirements.
Given the criticality of channel propagation characteristics at higher
frequencies, we present our implementation of the 3GPP channel model for the
6-100 GHz band for the ns-3 end-to-end 5G mmWave module, and detail its
associated MIMO beamforming architecture
Frame Structure Design and Analysis for Millimeter Wave Cellular Systems
The millimeter-wave (mmWave) frequencies have attracted considerable
attention for fifth generation (5G) cellular communication as they offer orders
of magnitude greater bandwidth than current cellular systems. However, the
medium access control (MAC) layer may need to be significantly redesigned to
support the highly directional transmissions, ultra-low latencies and high peak
rates expected in mmWave communication. To address these challenges, we present
a novel mmWave MAC layer frame structure with a number of enhancements
including flexible, highly granular transmission times, dynamic control signal
locations, extended messaging and ability to efficiently multiplex directional
control signals. Analytic formulae are derived for the utilization and control
overhead as a function of control periodicity, number of users, traffic
statistics, signal-to-noise ratio and antenna gains. Importantly, the analysis
can incorporate various front-end MIMO capability assumptions -- a critical
feature of mmWave. Under realistic system and traffic assumptions, the analysis
reveals that the proposed flexible frame structure design offers significant
benefits over designs with fixed frame structures similar to current 4G
long-term evolution (LTE). It is also shown that fully digital beamforming
architectures offer significantly lower overhead compared to analog and hybrid
beamforming under equivalent power budgets.Comment: Submitted to IEEE Transactions for Wireless Communication
Achieving Ultra-Low Latency in 5G Millimeter Wave Cellular Networks
The IMT 2020 requirements of 20 Gbps peak data rate and 1 millisecond latency
present significant engineering challenges for the design of 5G cellular
systems. Use of the millimeter wave (mmWave) bands above 10 GHz --- where vast
quantities of spectrum are available --- is a promising 5G candidate that may
be able to rise to the occasion.
However, while the mmWave bands can support massive peak data rates,
delivering these data rates on end-to-end service while maintaining reliability
and ultra-low latency performance will require rethinking all layers of the
protocol stack. This papers surveys some of the challenges and possible
solutions for delivering end-to-end, reliable, ultra-low latency services in
mmWave cellular systems in terms of the Medium Access Control (MAC) layer,
congestion control and core network architecture
Iron line spectroscopy of black holes in asymptotically safe gravity
We study the iron line shape expected in the reflection spectrum of accretion
disks around black holes in asymptotically safe gravity. We compare the results
of our simulations with the iron line shapes expected in the reflection
spectrum of accretion disks around Kerr black holes to see if the technique of
iron line spectroscopy can be used as a tool to test asymptotically safe
gravity. Our analysis shows that current X-ray facilities are surely unable to
distinguish black holes in asymptotically safe gravity from black holes in
Einstein's gravity. In the case of the next generation of X-ray missions, which
promise to provide unprecedented high quality data, the question remains open
because it cannot be addressed within our simplified model.Comment: 9 pages, 6 figures. v2: refereed versio
End-to-End Simulation of 5G mmWave Networks
Due to its potential for multi-gigabit and low latency wireless links,
millimeter wave (mmWave) technology is expected to play a central role in 5th
generation cellular systems. While there has been considerable progress in
understanding the mmWave physical layer, innovations will be required at all
layers of the protocol stack, in both the access and the core network.
Discrete-event network simulation is essential for end-to-end, cross-layer
research and development. This paper provides a tutorial on a recently
developed full-stack mmWave module integrated into the widely used open-source
ns--3 simulator. The module includes a number of detailed statistical channel
models as well as the ability to incorporate real measurements or ray-tracing
data. The Physical (PHY) and Medium Access Control (MAC) layers are modular and
highly customizable, making it easy to integrate algorithms or compare
Orthogonal Frequency Division Multiplexing (OFDM) numerologies, for example.
The module is interfaced with the core network of the ns--3 Long Term Evolution
(LTE) module for full-stack simulations of end-to-end connectivity, and
advanced architectural features, such as dual-connectivity, are also available.
To facilitate the understanding of the module, and verify its correct
functioning, we provide several examples that show the performance of the
custom mmWave stack as well as custom congestion control algorithms designed
specifically for efficient utilization of the mmWave channel.Comment: 25 pages, 16 figures, submitted to IEEE Communications Surveys and
Tutorials (revised Jan. 2018
- …