3,227 research outputs found
Modeling of Surface Damage at the Si/SiO-interface of Irradiated MOS-capacitors
Surface damage caused by ionizing radiation in SiO passivated silicon
particle detectors consists mainly of the accumulation of a positively charged
layer along with trapped-oxide-charge and interface traps inside the oxide and
close to the Si/SiO-interface. High density positive interface net charge
can be detrimental to the operation of a multi-channel -on- sensor since
the inversion layer generated under the Si/SiO-interface can cause loss of
position resolution by creating a conduction channel between the electrodes. In
the investigation of the radiation-induced accumulation of oxide charge and
interface traps, a capacitance-voltage characterization study of n/-
and -irradiated Metal-Oxide-Semiconductor (MOS) capacitors showed that
close agreement between measurement and simulation were possible when oxide
charge density was complemented by both acceptor- and donor-type deep interface
traps with densities comparable to the oxide charges. Corresponding inter-strip
resistance simulations of a -on- sensor with the tuned oxide charge
density and interface traps show close agreement with experimental results. The
beneficial impact of radiation-induced accumulation of deep interface traps on
inter-electrode isolation may be considered in the optimization of the
processing parameters of isolation implants on -on- sensors for the
extreme radiation environments.Comment: Corresponding author: T. Peltola. 24 pages, 17 figures, 6 table
Cerium-Doped Fused-Silica Fibers as Wavelength Shifters
We have evaluated the performance of a Ce-doped fused-silica fiber as
wavelength shifter coupled to a CeF crystal using electron beams at CERN.
The pulse shape and collection efficiency were measured using irradiated (100
kGy) and un-irradiated fibers. In addition, we evaluated the light yield of
various Ce-doped fibers and explored the possibility of using them in the
future, including for precision timing applications in a high-luminosity
collider environment.Comment: 11 pages, 7 figure
Charge Collection and Electrical Characterization of Neutron Irradiated Silicon Pad Detectors for the CMS High Granularity Calorimeter
The replacement of the existing endcap calorimeter in the Compact Muon
Solenoid (CMS) detector for the high-luminosity LHC (HL-LHC), scheduled for
2027, will be a high granularity calorimeter. It will provide detailed
position, energy, and timing information on electromagnetic and hadronic
showers in the immense pileup of the HL-LHC. The High Granularity Calorimeter
(HGCAL) will use 120-, 200-, and 300- thick silicon (Si) pad
sensors as the main active material and will sustain 1-MeV neutron equivalent
fluences up to about . In order
to address the performance degradation of the Si detectors caused by the
intense radiation environment, irradiation campaigns of test diode samples from
8-inch and 6-inch wafers were performed in two reactors. Characterization of
the electrical and charge collection properties after irradiation involved both
bulk polarities for the three sensor thicknesses. Since the Si sensors will be
operated at -30 C to reduce increasing bulk leakage current with
fluence, the charge collection investigation of 30 irradiated samples was
carried out with the infrared-TCT setup at -30 C. TCAD simulation
results at the lower fluences are in close agreement with the experimental
results and provide predictions of sensor performance for the lower fluence
regions not covered by the experimental study. All investigated sensors display
60 or higher charge collection efficiency at their respective highest
lifetime fluences when operated at 800 V, and display above 90 at the
lowest fluence, at 600 V. The collected charge close to the fluence of
exceeds 1 fC at voltages
beyond 800 V.Comment: 36 pages, 34 figure
Constraints on the χ_(c1) versus χ_(c2) polarizations in proton-proton collisions at √s = 8 TeV
The polarizations of promptly produced χ_(c1) and χ_(c2) mesons are studied using data collected by the CMS experiment at the LHC, in proton-proton collisions at √s=8 TeV. The χ_c states are reconstructed via their radiative decays χ_c → J/ψγ, with the photons being measured through conversions to e⁺e⁻, which allows the two states to be well resolved. The polarizations are measured in the helicity frame, through the analysis of the χ_(c2) to χ_(c1) yield ratio as a function of the polar or azimuthal angle of the positive muon emitted in the J/ψ → μ⁺μ⁻ decay, in three bins of J/ψ transverse momentum. While no differences are seen between the two states in terms of azimuthal decay angle distributions, they are observed to have significantly different polar anisotropies. The measurement favors a scenario where at least one of the two states is strongly polarized along the helicity quantization axis, in agreement with nonrelativistic quantum chromodynamics predictions. This is the first measurement of significantly polarized quarkonia produced at high transverse momentum
- …