3 research outputs found

    Application of Electrochemical Redox Cycling: Toward Differentiation of Dopamine and Norepinephrine

    Full text link
    The electrochemical redox cycling behavior of dopamine (DA), norepinephrine (NE), and their mixture was investigated using coplanar gold microband electrode arrays at four generator-collector gap conditions (4, 12, 20, and 28 μm). This method provides opportunity for differentiating the catecholamines in mixtures by monitoring the current at collector electrodes activated at different distances from generator electrodes. It takes advantage of the ECC′ mechanism associated with the electrochemical oxidation of catecholamines, in which DA and NE have rate constants that differ by a factor of 7.5 for the first order intramolecular cyclization (C) following electron transfer (E). Collector electrodes activated at different distances from the generators were used to examine the process of the following chemistry at different time points, because spatial relationships are related to temporal ones through diffusion. Solutions of artificial cerebral spinal fluid containing 50 μM DA, 50 μM NE, and a DA–NE mixture of 50 μM of each were examined. The collection efficiency during redox cycling for NE had a greater dependence on gap width than DA, and the collector current of NE became silent at ∼20 μm. The collector current of the mixture approaches that of DA alone with increasing gap, suggesting that differentiation of DA and NE may be possible. The collector current of the mixture is further affected by the homogeneous reaction (C′) between oxidized and cyclized products of DA and NE and drops below that of DA alone. This may be used for differentiation in more complicated chemical systems

    Assessing Breast Cancer Molecular Subtypes Using Extracellular Vesicles’ mRNA

    Full text link
    Extracellular vesicles (EVs) carry RNA cargo that is believed to be associated with the cell-of-origin and thus have the potential to serve as a minimally invasive liquid biopsy marker for supplying molecular information to guide treatment decisions (i.e., precision medicine). We report the affinity isolation of EV subpopulations with monoclonal antibodies attached to the surface of a microfluidic chip that is made from a plastic to allow for high-scale production. The EV microfluidic affinity purification (EV-MAP) chip was used for the isolation of EVs sourced from two-orthogonal cell types and was demonstrated for its utility in a proof-of-concept application to provide molecular subtyping information for breast cancer patients. The orthogonal selection process better recapitulated the epithelial tumor microenvironment by isolating two subpopulations of EVs: EVEpCAM (epithelial cell adhesion molecule, epithelial origin) and EVFAPα (fibroblast activation protein α, mesenchymal origin). The EV-MAP provided recovery >80% with a specificity of 99 ± 1% based on exosomal mRNA (exo-mRNA) and real time–droplet digital polymerase chain reaction results. When selected from the plasma of healthy donors and breast cancer patients, EVs did not differ in size or total RNA mass for both markers. On average, 0.5 mL of plasma from breast cancer patients yielded ∼2.25 ng of total RNA for both EVEpCAM and EVFAPα, while in the case of cancer-free individuals, it yielded 0.8 and 1.25 ng of total RNA from EVEpCAM and EVFAPα, respectively. To assess the potential of these two EV subpopulations to provide molecular information for prognostication, we performed the PAM50 test (Prosigna) on exo-mRNA harvested from each EV subpopulation. Results suggested that EVEpCAM and EVFAPα exo-mRNA profiling using subsets of the PAM50 genes and a novel algorithm (i.e., exo-PAM50) generated 100% concordance with the tumor tissue

    Dopamine induces platelet production from megakaryocytes via oxidative stress-mediated signaling pathways

    Full text link
    <p>Dopamine (DA), a catecholamine neurotransmitter, is known to for its diverse roles on hematopoiesis, yet its function in thrombopoiesis remains poorly understood. This study shows that DA stimulation can directly induce platelet production from megakaryocytes (MKs) in the final stages of thrombopoiesis via a reactive oxygen species (ROS)-dependent pathway. The mechanism was suggested by the results that DA treatment could significantly elevate the ROS levels in MKs, and time-dependently activate oxidative stress-mediated signaling, including p38 mitogen-activated protein kinase, c-Jun NH2-terminal kinase, and caspase-3 signaling pathways, while the antioxidants N-acetylcysteine and L-glutathione could effectively inhibit the activation of these signaling pathways, as well as the ROS increase and platelet production triggered by DA. Therefore, our data revealed that the direct role and mechanism of DA in thrombopoiesis, which provides new insights into the function recognition of DA in hematopoiesis.</p
    corecore