36 research outputs found
Probiotics - do they have a role in the pig industry?
The delivery of certain living microorganisms in food has long been suggested as having positive health effects in humans. This practice has extended into food animal production, with a variety of microorganisms being used; lactic acid bacteria, various Bacillus species and the yeast Saccharomyces cerevisiae have been particularly used in the pig industry. The increased interest in probiotics is essentially due to the problem of microbial resistance to antibiotics and following the ban of the use of antibiotics in animal production, probiotics being considered an alternative means to reduce pathogen infection and improve animal health especially around the time of weaning. However, there is still a need to clarify the probiotic effectiveness in pigs, and the underlying mechanisms. When assessing the efficacy of probiotics one must consider the particular strain of organism being used and the production stage of the pigs being treated. The reproducible delivery of probiotics in industrial pig production is problematic as maintenance of viability is key to their beneficial activity, but difficult to achieve with commonly used feed processing technologies. One specific context where probiotics organisms may be reliably delivered is in systems utilising fermented liquid feeds. Liquid feed may be fermented by the activity of wild lactic acid bacteria or may be stimulated using specific isolates as 'starters'; the latter system has advantages in terms of reproducibility and speed of fermentation. The farm context in which the organism is used is likely to be critical; the use of probiotics is more likely to result in measurable economic gains in animals living in sub-optimal conditions rather than in those reared in the highest welfare and husbandry conditions. The establishment of a beneficial lactic acid bacteria population at birth may lead to healthier animals, this may be most effectively achieved by treating sows, which provide an amplification step and flood the neonatal pigs' environment with desirable bacterial strains. In contrast, it may be sufficient to provide a supportive, protective microbiota around the time of weaning as this is a time of major crisis with instability and loss of certain bacterial populations
La scelta universitaria e la professione di insegnante
La scelta del corso universitario preliminare alla professione docente, per un gruppo di insegnanti in formazione, esaminata con un metodo misto, quantitativo e qualitativo, appare prevalentemente connessa a una motivazione intrinseca, rafforzata dai risultati conseguiti durante il percorso scolastico. Dal questionario strutturato, comprendente anche un resoconto narrativo, risulta che i partecipanti alla ricerca si dichiarano in larga maggioranza soddisfatti della scelta universitaria compiuta, ma circa un quarto dei partecipanti esprime rimpianto, e ciò conferma l'opportunità di realizzare percorsi di orientamento universitario e professionale nella scuola
Cytokine gene expression in intestine of rat during the postnatal developmental period: increased IL-1 expression at weaning.
In the present study we have investigate whether cytokines are constitutively and differently expressed in intestine during the differentiative processes that take place at weaning. We have analyzed the expression of IL-1 beta, IL-2, IL-4 and IFN gamma by polymerase chain reaction in Peyer's patches (PP) and in intestine deprived of PP (I-PP) of rats from 16 to 30 days of age. The results showed a constitutive and marked expression of the cytokines already before weaning, with the exception of IL-2 in PP and IFN gamma in I-PP. IL-beta was the only cytokine to show a different expression at various ages with an initial increase at 19 days and a further elevation at 21 days when intestinal epithelium passes through major differentiative stages, suggesting an involvement of this cytokine in intestinal development. We have also tested whether treatment of rats with the immunosuppressor cyclosporin A (CsA) could affect intestinal differentiation. The results showed that only some markers of differentiation were affected (proliferation of staminal crypt cells and length of crypts). This was probably due to a direct effect rather than an immunomediated effect of CsA, since treatment of three intestinal cell lines (Caco-2, HT-29, FRIC) with CsA indicated that this drug can exert a cytostatic activity on intestinal cells