28 research outputs found

    Cl −

    Get PDF

    Evapotranspiration in the Tono Reservoir Catchment in Upper East Region of Ghana Estimated by a Novel TSEB Approach from ASTER Imagery

    No full text
    Evapotranspiration (ET) is dynamic and influences water resource distribution. Sustainable management of water resources requires accurate estimations of the individual components that result in evapotranspiration, including the daily net radiation (DNR). Daily ET is more useful than the evaporative fraction (EF) provided by remote sensing ET models, and to account for daily variations, EF is usually combined with the DNR. DNR exhibits diurnal and spatiotemporal variations due to landscape heterogeneity. In the modified Two-Source Energy Balance (TSEB) approach by Zhuang and Wu, 2015, ecophysiological constraint functions of temperature and moisture of plants based on atmospheric moisture and vegetation indices were introduced, but the DNR was not spatially accounted for in the estimation of the daily ET. This research adopted a novel approach that accounts for spatiotemporal variations in estimated daily ET by incorporating the Bisht and Bras DNR model in the modified version of the TSEB model. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) satellite imagery over the Tono irrigation watershed within the Upper East Region of Ghana and Southern Burkina Faso were used. We estimated the energy fluxes of latent and sensible heat as well as the net radiation and soil heat fluxes from the satellite images and compared our results with ground-based measurements from an eddy covariance (EC) station established by the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL) within the watershed area. We noticed a similarity between our model estimated fluxes and ET with the ground-based EC station measurements. Eight different land use/cover types were identified in the study area, and each of these contributed significantly to the overall ET variations between the two study periods: December 2009 and December 2017. For instance, due to a higher leaf area index (LAI) for all vegetation types in December 2009 than in December 2017, the ET for December 2017 was higher than that for December 2009. We also noticed that the land use/cover types within the footprint area of the EC station were only six out of the eight. Generally, all the surface energy fluxes increased from December 2009 to December 2017. Mean ET varied from 3.576 to 4.486 (mm/d) for December 2009 while from 4.502 to 5.280 (mm/d) for December 2017 across the different land use/cover classes. Knowledge of the dynamics of evapotranspiration and adoption of cost-effective methods to estimate its individual components in an effective and efficient way is critical to water resources management. Our findings provide a tool for all water stakeholders within watersheds to manage water resources in an engaging and cost-effective way

    Temporal and Spatial Assessment of Soil Salinity Post-Flood Irrigation: A Guide to Optimal Cotton Sowing Timing

    No full text
    Flood irrigation is often applied in the arid regions of Northwest China to facilitate the leaching of salts accumulated in the soil during cotton growth in the previous season. This will, in turn, affect the temporal and spatial patterns of soil salinity, and thus cotton germination. To reveal the salinity of the two soil layers (0–20 cm and 20–60 cm), so as to determine the optimal cotton sowing timing, an electronic ground conductivity meter (EM38-MK2) was employed to measure the soil apparent electrical-conductivity (ECa) on different days: 4 days prior to flood irrigation, and, respectively, 6, 10, 15, 20, and 45 days after flood irrigation. Moreover, geostatistical analysis and block kriging interpolation were employed to analyze the spatial-temporal variations of soil salinity introduced by flood irrigation. Our results indicate that: (1) soil salinity in the two layers on different days can be well inverted from binary first-order equations of ECa at two coils (i.e., ECa1.0 and ECa0.5), demonstrating the feasibility of applying EM38-MK2 to estimate soil salinity in the field; and (2) soil salinity in the 0–20 cm layer significantly decreased during the first 15 days after flood irrigation with the greatest leaching rate of 88.37%, but tended to increase afterwards. However, the salinity in the 20–60 cm layer was persistently high before and after flood irrigation, with merely a brief decrease during the first 10 days after flood irrigation at the highest leaching rate of 40.74%. (3) The optimal semi-variance models illustrate that, after flood irrigation, the sill value (C0 + C) in the 0–20 cm layer decreased sharply, but the 20–60 cm Range of the layer significantly increased, suggesting that flood irrigation not only reduces the spatial variability of surface soil salinity, but also enhances spatial dependence in the 20–60 cm layer. (4) The correlation of the soil salinity between the two soil layers was very poor before flood irrigation, but gradually enhanced during the first 15 days after flood irrigation. Overall, for the study year, the first 15 days after flood irrigation was an optimal timing for cotton sowing when the leaching effects during flood irrigation were most efficient, and overrode the effects of evaporation and microtopography. Although not directly applicable to other years or regions, the electromagnetic induction surveys and spatiotemporal analysis of soil salinity can provide a rapid and viable guide to help determine optimal cotton sowing timing

    An Experimental Study on the Adsorption and Desorption of Cu(II) in Silty Clay

    No full text
    Heavy metals such as Cu(II) are widespread in the environment, and the impact of heavy metals on the environment of soils depends on the ability of soils to immobilize these pollutants. It is necessary to investigate the mechanism of interaction between heavy metal and soil from a soil remediation perspective. In this study, a series of experiments were conducted to investigate the adsorption and desorption behavior of Cu(II) in silty clay. Several impact factors such as pH, organic matter, temperature, and coexisted ions Zn(II) were considered. It was found that the adsorption process reached equilibrium after 4 hours of the experiment, and the data can be fitted well by the Elovich model and the double-constant model for the kinetic sorption process. The isothermal adsorption results showed that the adsorption rate reached a peak value when the initial concentration was about 20 mg L−1. The decrease of H+ can increase the adsorption activity of Cu(II) and reduce the ability of the desorption of Cu(II) ions. The adsorption capacity of Cu(II) is less than the desorption capacity under the condition of strong acidity and low concentration of Cu(II). In addition, the adsorption capacity of the native soil on Cu(II) was larger than that of the soil with the removal of organic matter, while the opposite was true for the desorption capacity on Cu(II). The maximum adsorption of Cu(II) occurred at 35°C for this study, and the binding energy increased as the temperature increased. Thermodynamic analysis revealed that the adsorption process of Cu(II) was spontaneous and endothermic. The Freundlich, Langmuir, Temkin, and Henry adsorption models were used for analyzing the adsorption isotherm of Cu(II), and it was found that the Freundlich model agreed the best with the experimental data compared with other three models. The results of the competitive adsorption experiments indicated that the competitive capacity of Cu(II) was greater than that of Zn(II) in low-permeability media such as silty clay, and the existence of binary metals can weaken the adsorption force between the single metal and the soil surface

    Distribution characteristics and source identification of shallow groundwater pollution in Yongcheng City

    No full text
    In order to effectively manage and protect the shallow groundwater resource in Yongcheng City and maintain the sustainable utilization of water resource, distribution characteristics and sources of pollutants must be identified.On the basis of sampling and analysis of shallow groundwater, this paper studies the sources and distribution characteristics of main pollution components, combining with the influence of industrial layout change and land use type distribution caused by urban development.The results show that the growth of urban secondary industry (industry and mining) and GDP are correlated with the increase of SO42- and NO3- contents in shallow groundwater, the dense areas of urban industry and population tend to be the same as the seriously polluted areas of shallow groundwater.The main source of shallow groundwater pollution is the increase of SO42- content, in addition to directly causing the deterioration of water quality.It also indirectly changes the intensity of hydrogeochemical action.It leads to an increase in the dissolution of the insoluble carbonate and silicate, which further increases the content of TDS and changes the water quality.In addition, NO3- and COD are also the main pollution sources.It comes partly from industrial waste water and partly from the excessive use of pesticides and fertilizer in agriculture

    Preliminary discussion on the principle of minimum energy consumption rate controlling hierarchical groundwater flow systems

    No full text
    In the early 1960s, Tóth obtained hierarchical groundwater flow systems by using analytical solution based on given-head upper boundary, which is a milestone breakthrough in hydrogeology and successfully solved a series of theoretical and practical problems.However, the defects of Tóth's analytical solution have been followed for a long time such as focusing solely on mathematical simulation and ignoring the physical mechanism; taking terrain control of water table as a universal law; and ignoring the distortion of the mathematical simulation based on given-head upper boundary.These shortcomings, especially the lack of the physical mechanisms exploration, not only hindered the development of Tótian theory itself, but also made the theory difficult to be understood, so that the theory has not being widely applied yet by the international hydrogeological community.This paper proposes an expression for the minimum energy consumption rate of groundwater flow referring to the principle of minimum energy consumption rate applied in river dynamics.Based on the exited results of "numerical simulation of groundwater flow patterns using flux as upper boundary", the physical mechanism is further explored, and it is concluded that groundwater flow follows the principle of minimum energy consumption rate
    corecore