82 research outputs found

    Sample-Efficient Learning of POMDPs with Multiple Observations In Hindsight

    Full text link
    This paper studies the sample-efficiency of learning in Partially Observable Markov Decision Processes (POMDPs), a challenging problem in reinforcement learning that is known to be exponentially hard in the worst-case. Motivated by real-world settings such as loading in game playing, we propose an enhanced feedback model called ``multiple observations in hindsight'', where after each episode of interaction with the POMDP, the learner may collect multiple additional observations emitted from the encountered latent states, but may not observe the latent states themselves. We show that sample-efficient learning under this feedback model is possible for two new subclasses of POMDPs: \emph{multi-observation revealing POMDPs} and \emph{distinguishable POMDPs}. Both subclasses generalize and substantially relax \emph{revealing POMDPs} -- a widely studied subclass for which sample-efficient learning is possible under standard trajectory feedback. Notably, distinguishable POMDPs only require the emission distributions from different latent states to be \emph{different} instead of \emph{linearly independent} as required in revealing POMDPs

    Study on Physiological Parameters of Lacrimal Obstruction Diseases Based on CT of Lacrimal Passage

    Get PDF
    The occurrence of lacrimal passage obstruction diseases is closely related to the physiological parameters of lacrimal passage. The lacrimal passage is divided into membranous lacrimal passage and bony lacrimal passage. Computed tomography (CT) of lacrimal passage can help us understand the situation of bony lacrimal passage and clarify the impact of individual anatomical differences on the occurrence of diseases. The following chapters present the physiological parameters of lacrimal passage measured by lacrimal passage CT and the impact of anatomical structure of lacrimal sac fossa on endoscopic dacryocystisinostomy, and analyze the relevant anatomical parameters of the dacryocystitis patients, including the angle between the nasolacrimal passage and the nasal plane, and the correlation between the deviation of the nasal septum and the occurrence of dacryocystitis

    A Homeodomain-Containing Transcriptional Factor PoHtf1 Regulated the Development and Cellulase Expression in Penicillium oxalicum

    Get PDF
    Homeodomain-containing transcription factors (Htfs) play important roles in animals, fungi, and plants during some developmental processes. Here, a homeodomain-containing transcription factor PoHtf1 was functionally characterized in the cellulase-producing fungi Penicillium oxalicum 114-2. PoHtf1 was shown to participate in colony growth and conidiation through regulating the expression of its downstream transcription factor BrlA, the key regulator of conidiation in P. oxalicum 114-2. Additionally, PoHtf1 inhibited the expression of the major cellulase genes by coordinated regulation of cellulolytic regulators CreA, AmyR, ClrB, and XlnR. Furthermore, transcriptome analysis showed that PoHtf1 participated in the secondary metabolism including the pathway synthesizing conidial yellow pigment. These data show that PoHtf1 mediates the complex transcriptional-regulatory network cascade between developmental processes and cellulolytic gene expression in P. oxalicum 114-2. Our results should assist the development of strategies for the metabolic engineering of mutants for applications in the enzymatic hydrolysis for biochemical production

    Self-organized Voids Revisited: Experimental Verification of the Formation Mechanism*

    Get PDF
    In this paper, several experiments were conducted to further clarify the formation mechanism of self organized void array induced by a single laser beam, including energy-related experiments, refractive-index-contrast-related experiments, depth-related experiments and effective-numerical-aperture experiment. These experiments indicate that the interface spherical aberration is indeed responsible for the formation of void arrays

    Severe Fever With Thrombocytopenia Syndrome Virus-Induced Macrophage Differentiation Is Regulated by miR-146

    Get PDF
    Severe fever with thrombocytopenia syndrome (SFTS) is an emerging hemorrhagic fever with a high mortality rate in humans, which is caused by SFTS virus (SFTSV), a novel phlebovirus in the Bunyaviridae family, is tick borne and endemic in Eastern Asia. Previous study found that SFTSV can infect and replicate in macrophages in vivo and in vitro. However, the role of macrophages in virus replication and the potential pathogenic mechanisms of SFTSV in macrophage remain unclear. In this study, we provided evidence that the SFTSV infection drove macrophage differentiation skewed to M2 phenotype, facilitated virus shedding, and resulted in viral spread. We showed evidence that miR-146a and b were significantly upregulated in macrophages during the SFTSV infection, driving the differentiation of macrophages into M2 cells by targeting STAT1. Further analysis revealed that the elevated miR-146b but not miR-146a was responsible for IL-10 stimulation. We also found that SFTSV increased endogenous miR-146b-induced differentiation of macrophages into M2 cells mediated by viral non-structural protein (NSs). The M2 skewed differentiation of macrophages may have important implication to the pathogenesis of SFTS

    Validation of CyTOF Against Flow Cytometry for Immunological Studies and Monitoring of Human Cancer Clinical Trials

    Get PDF
    Flow cytometry is a widely applied approach for exploratory immune profiling and biomarker discovery in cancer and other diseases. However, flow cytometry is limited by the number of parameters that can be simultaneously analyzed, severely restricting its utility. Recently, the advent of mass cytometry (CyTOF) has enabled high dimensional and unbiased examination of the immune system, allowing simultaneous interrogation of a large number of parameters. This is important for deep interrogation of immune responses and particularly when sample sizes are limited (such as in tumors). Our goal was to compare the accuracy and reproducibility of CyTOF against flow cytometry as a reliable analytic tool for human PBMC and tumor tissues for cancer clinical trials. We developed a 40+ parameter CyTOF panel and demonstrate that compared to flow cytometry, CyTOF yields analogous quantification of cell lineages in conjunction with markers of cell differentiation, function, activation, and exhaustion for use with fresh and viably frozen PBMC or tumor tissues. Further, we provide a protocol that enables reliable quantification by CyTOF down to low numbers of input human cells, an approach that is particularly important when cell numbers are limiting. Thus, we validate CyTOF as an accurate approach to perform high dimensional analysis in human tumor tissue and to utilize low cell numbers for subsequent immunologic studies and cancer clinical trials

    Particle size effect on water vapor sorption measurement of organic shale: One example from Dongyuemiao Member of Lower Jurassic Ziliujing Formation in Jiannan Area of China

    Get PDF
     Shale formations generally contain a certain amount of water, and the occurrence of water can strongly affect the free gas content and gas storage capacity within shale. Although some studies have conducted water vapor adsorption tests to understand the water adsorption behavior and water-shale interactions, surprisingly the influence of grain size on water vapor sorption of shale is poorly understood. In this work, water vapor adsorption experiments on one Dongyuemiao shale from Ziliujing Formation in Jiannan Area, with different particle sizes (8-12 mesh, 20-35 mesh, 35-80 mesh, 80-200 mesh, and > 200 mesh) are conducted over a wide relative humidity (RH) range (5%-95%) using a gravimetric method. The influence of particle size on water vapor adsorption measurement is investigated and the optimal particle size is suggested for water vapor experiment. Results show that the maximum uptake of water vapor adsorption is smaller in larger particle sized sample, which is related to the variation of accessible pores. Monolayer adsorption capacity obtained from Guggenheim-Anderson-de Boer (GAB) modelling tends to increase as the particle size increases, suggesting a stronger water vapor adsorption potential. Comparative studies show that 20-35 mesh is suggested to be the optimum particle size for comparative purpose. The quantity of adsorption on the primary and secondary sites is comparable or equals at a RH range of approximately 60%-80%. When RH value is smaller than 60%, the quantity of water vapor adsorption on the primary site dominates, while adsorption uptake on the secondary site plays a dominant role when RH value is greater than 80%. When particle size increases, water vapor adsorptions on the primary sites increases slightly, while a decrease trend is observed for water vapor adsorption on secondary sites.Cited as: Yang, R., Jia, A., Hu, Q., Guo, X., Sun, M. Particle size effect on water vapor sorption measurement of organic shale: One example from Dongyuemiao Member of Lower Jurassic Ziliujing Formation in Jiannan Area of China. Advances in Geo-Energy Research, 2020, 4(2): 207-218, doi: 10.26804/ager.2020.02.09
    • …
    corecore